|
Problemy Peredachi Informatsii, 2009, Volume 45, Issue 4, Pages 91–106
(Mi ppi2001)
|
|
|
|
Methods of Signal Processing
On signal reconstruction in white noise using dictionaries
G. K. Golubevab a Université de Provence, Marseille, France
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Abstract:
Assume that we observe a Gaussian vector $Y=X\beta+\sigma\xi$, where $X$ is a known $p\times n$ matrix with $p\ge n$, $\beta\in\mathbb R^n$ is an unknown vector, and $\xi\in\mathbb R^n$ is a standard Gaussian white noise. The problem is to reconstruct $X\beta$ from observations $Y$, provided that $\beta$ is a sparse vector.
Received: 25.04.2008 Revised: 21.09.2009
Citation:
G. K. Golubev, “On signal reconstruction in white noise using dictionaries”, Probl. Peredachi Inf., 45:4 (2009), 91–106; Problems Inform. Transmission, 45:4 (2009), 378–392
Linking options:
https://www.mathnet.ru/eng/ppi2001 https://www.mathnet.ru/eng/ppi/v45/i4/p91
|
Statistics & downloads: |
Abstract page: | 349 | Full-text PDF : | 99 | References: | 44 | First page: | 14 |
|