Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2007, Volume 43, Issue 3, Pages 75–96 (Mi ppi20)  

This article is cited in 2 scientific papers (total in 2 papers)

Large Systems

Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove results on exact asymptotics of the probabilities
$$ \mathbf P\biggl\{\int\limits_0^1e^{\varepsilon\xi(t)}\,dt>b\biggr\},\qquad \mathbf P\biggl\{\int\limits_0^1e^{|\varepsilon\xi(t)|}\,dt>b\biggr\},\qquad \varepsilon\to0, $$
where $b>1$, for two Gaussian processes $\xi(t)$, namely, a Wiener process and a Brownian bridge. We use the Laplace method for Gaussian measures in Banach spaces. Evaluation of constants is reduced to solving an extreme value problem for the rate function and studying the spectrum of a second-order differential operator of the Sturm–Liouville type with the use of Legendre functions.
Received: 01.03.2007
English version:
Problems of Information Transmission, 2007, Volume 43, Issue 3, Pages 233–254
DOI: https://doi.org/10.1134/S0032946007030064
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: V. R. Fatalov, “Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas”, Probl. Peredachi Inf., 43:3 (2007), 75–96; Problems Inform. Transmission, 43:3 (2007), 233–254
Citation in format AMSBIB
\Bibitem{Fat07}
\by V.~R.~Fatalov
\paper Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 3
\pages 75--96
\mathnet{http://mi.mathnet.ru/ppi20}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360019}
\zmath{https://zbmath.org/?q=an:1136.60357}
\elib{https://elibrary.ru/item.asp?id=13544159}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 3
\pages 233--254
\crossref{https://doi.org/10.1134/S0032946007030064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255782800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35848957680}
Linking options:
  • https://www.mathnet.ru/eng/ppi20
  • https://www.mathnet.ru/eng/ppi/v43/i3/p75
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025