Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2009, Volume 45, Issue 4, Pages 3–17 (Mi ppi1995)  

This article is cited in 5 scientific papers (total in 5 papers)

Information Theory

Mutual information of several random variables and its estimation via variation

V. V. Prelov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (302 kB) Citations (5)
References:
Abstract: We obtain some upper and lower bounds for the maximum of mutual information of several random variables via variational distance between the joint distribution of these random variables and the product of its marginal distributions. In this connection, some properties of variational distance between probability distributions of this type are derived. We show that in some special cases estimates of the maximum of mutual information obtained here are optimal or asymptotically optimal. Some results of this paper generalize the corresponding results of [1–3] to the multivariate case.
Received: 12.05.2009
English version:
Problems of Information Transmission, 2009, Volume 45, Issue 4, Pages 295–308
DOI: https://doi.org/10.1134/S0032946009040012
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.2
Language: Russian
Citation: V. V. Prelov, “Mutual information of several random variables and its estimation via variation”, Probl. Peredachi Inf., 45:4 (2009), 3–17; Problems Inform. Transmission, 45:4 (2009), 295–308
Citation in format AMSBIB
\Bibitem{Pre09}
\by V.~V.~Prelov
\paper Mutual information of several random variables and its estimation via variation
\jour Probl. Peredachi Inf.
\yr 2009
\vol 45
\issue 4
\pages 3--17
\mathnet{http://mi.mathnet.ru/ppi1995}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641322}
\zmath{https://zbmath.org/?q=an:1190.94021}
\transl
\jour Problems Inform. Transmission
\yr 2009
\vol 45
\issue 4
\pages 295--308
\crossref{https://doi.org/10.1134/S0032946009040012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273795900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-75649136907}
Linking options:
  • https://www.mathnet.ru/eng/ppi1995
  • https://www.mathnet.ru/eng/ppi/v45/i4/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:752
    Full-text PDF :186
    References:74
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024