Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1966, Volume 2, Issue 3, Pages 23–38 (Mi ppi1955)  

Asymptotic Behavior of the Error Probabilities of the First and Second Kind in Hypothesis Testing of the Spectrum of a Stationary Gaussian Process

D. S. Apokorin
Abstract: This paper derives expressions for the rate of convergence to zero of errors of the first and second kind, $\alpha_n$ and $\beta_n$ respectively, according to the Neyman–Pearson criterion for different hypotheses $H_i$, $i=1,2,$ and for known sampling $x_k=x(Tk/n)$, $k=0,1,\dots,n$, for $n\to\infty$. Hypothesis $H_i$ states that the spectral density of the process $x(t)$ is equal to $f_i(\lambda)\asymp|\lambda|^{(-1+\lambda_i)}$ for$\lambda\to\infty$. In order to derive the asymptotic behavior of $\lambda_n$ and $\beta_n$ the distribution of eigenvalues of the matrix $B_1B_2^{-1}$ is determined, where $B_1$ is the correlation matrix of the random variables $x_k$, $k=0,1,\dots,n$, under the condition that hypothesis $H_i$ holds. Afterwards the theorem on large deviations for independent random variables is applied.
Received: 01.11.1965
Bibliographic databases:
UDC: 519.25
Language: Russian
Citation: D. S. Apokorin, “Asymptotic Behavior of the Error Probabilities of the First and Second Kind in Hypothesis Testing of the Spectrum of a Stationary Gaussian Process”, Probl. Peredachi Inf., 2:3 (1966), 23–38; Problems Inform. Transmission, 2:3 (1966), 19–31
Citation in format AMSBIB
\Bibitem{Apo66}
\by D.~S.~Apokorin
\paper Asymptotic Behavior of the Error Probabilities of the First and Second Kind in Hypothesis Testing of the Spectrum of a~Stationary Gaussian Process
\jour Probl. Peredachi Inf.
\yr 1966
\vol 2
\issue 3
\pages 23--38
\mathnet{http://mi.mathnet.ru/ppi1955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=214256}
\zmath{https://zbmath.org/?q=an:0291.62118}
\transl
\jour Problems Inform. Transmission
\yr 1966
\vol 2
\issue 3
\pages 19--31
Linking options:
  • https://www.mathnet.ru/eng/ppi1955
  • https://www.mathnet.ru/eng/ppi/v2/i3/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :111
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025