Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1967, Volume 3, Issue 4, Pages 72–80 (Mi ppi1923)  

Arithmetic Codes with Correction of Multiple Errors

I. L. Erosh, S. L. Erosh
Abstract: The use of arithmetic correcting codes in a system consisting of a communication channel and a digital computer makes it possible to detect or correct errors arising in any section of this system, both in the communication channel and in the information processors, and this affords the possibility of considerably reducing the number of encoders and decoders. The universality of arithmetic codes is due to this. Methods of finding such codes with code distance equal to three are described in the literature. An extremely inefficient inspection process may be used for finding codes with a large distance. In this paper a method of synthesizing arithmetic codes with any code distance is presented. Several theorems enabling this synthesis to be realized are stated. An upper bound is given for arithmetic codes similar to Hamming's upper bound for group codes.
Received: 02.07.1966
Bibliographic databases:
UDC: 621.391.15
Language: Russian
Citation: I. L. Erosh, S. L. Erosh, “Arithmetic Codes with Correction of Multiple Errors”, Probl. Peredachi Inf., 3:4 (1967), 72–80; Problems Inform. Transmission, 3:4 (1967), 56–63
Citation in format AMSBIB
\Bibitem{EroEro67}
\by I.~L.~Erosh, S.~L.~Erosh
\paper Arithmetic Codes with Correction of Multiple Errors
\jour Probl. Peredachi Inf.
\yr 1967
\vol 3
\issue 4
\pages 72--80
\mathnet{http://mi.mathnet.ru/ppi1923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=286552}
\zmath{https://zbmath.org/?q=an:0262.94013}
\transl
\jour Problems Inform. Transmission
\yr 1967
\vol 3
\issue 4
\pages 56--63
Linking options:
  • https://www.mathnet.ru/eng/ppi1923
  • https://www.mathnet.ru/eng/ppi/v3/i4/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024