Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1993, Volume 29, Issue 3, Pages 3–9 (Mi ppi183)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Bounds on Complexity of Trellis Decoding of Linear Block Codes

V. V. Zyablov, V. R. Sidorenko
Full-text PDF (751 kB) Citations (4)
Abstract: It is shown that the syndrome trellis [1,2] is minimal. A simple proof of the lower bound on the number of nodes of the minimal trellis is given. Asymptotic bounds on the complexity of soft maximum likelihood trellis decoding are proposed.
It is shown that virtually all codes meet the upper complexity bound. Nevertheless the block codes, constructed by termination of convolutional codes, have smaller trellis decoding complexity. The complexity is minimal if the Varshamov–Gilbert bound is tight for binary codes.
Received: 23.11.1992
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:51
Language: Russian
Citation: V. V. Zyablov, V. R. Sidorenko, “Bounds on Complexity of Trellis Decoding of Linear Block Codes”, Probl. Peredachi Inf., 29:3 (1993), 3–9; Problems Inform. Transmission, 29:3 (1993), 203–208
Citation in format AMSBIB
\Bibitem{ZyaSid93}
\by V.~V.~Zyablov, V.~R.~Sidorenko
\paper Bounds on Complexity of Trellis Decoding of Linear Block Codes
\jour Probl. Peredachi Inf.
\yr 1993
\vol 29
\issue 3
\pages 3--9
\mathnet{http://mi.mathnet.ru/ppi183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1239372}
\zmath{https://zbmath.org/?q=an:0833.94017}
\transl
\jour Problems Inform. Transmission
\yr 1993
\vol 29
\issue 3
\pages 203--208
Linking options:
  • https://www.mathnet.ru/eng/ppi183
  • https://www.mathnet.ru/eng/ppi/v29/i3/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :204
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024