|
Problemy Peredachi Informatsii, 1970, Volume 6, Issue 3, Pages 50–59
(Mi ppi1752)
|
|
|
|
Nonlinear Transformations of Gaussian Processes
Yu. M. Ryzhov
Abstract:
The article considers nonlinear transformations of Gaussian process $\xi(t)$ which have the form $\int_0^Tf(\xi(t))dt$ It is shown that for a certain class of Gaussian processes, $\xi(t)$ can specify the function $\mathbf I(x)=\int_0^T\delta(x+\xi(t))dt$, where $\delta(t)$ is the Dirac delta function. The properties of $\mathbf I(x)$ are studied.
Received: 30.05.1968
Citation:
Yu. M. Ryzhov, “Nonlinear Transformations of Gaussian Processes”, Probl. Peredachi Inf., 6:3 (1970), 50–59; Problems Inform. Transmission, 6:3 (1970), 230–237
Linking options:
https://www.mathnet.ru/eng/ppi1752 https://www.mathnet.ru/eng/ppi/v6/i3/p50
|
Statistics & downloads: |
Abstract page: | 168 | Full-text PDF : | 80 |
|