Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2007, Volume 43, Issue 3, Pages 39–53 (Mi ppi17)  

This article is cited in 27 scientific papers (total in 27 papers)

Coding Theory

Conflict-Avoiding Codes and Cyclic Triple Systems

V. I. Levenshtein
References:
Abstract: The paper deals with the problem of constructing a code of the maximum possible cardinality consisting of binary vectors of length $n$ and Hamming weight 3 and having the following property: any $3\times n$ matrix whose rows are cyclic shifts of three different code vectors contains a $3\times3$ permutation matrix as a submatrix. This property (in the special case $w=3$) characterizes conflict-avoiding codes of length $n$ for $w$ active users, introduced in [1]. Using such codes in channels with asynchronous multiple access allows each of $w$ active users to transmit a data packet successfully in one of $w$ attempts during n time slots without collisions with other active users. An upper bound on the maximum cardinality of a conflict-avoiding code of length $n$ with $w=3$ is proved, and constructions of optimal codes achieving this bound are given. In particular, there are found conflict-avoiding codes for $w=3$ which have much more vectors than codes of the same length obtained from cyclic Steiner triple systems by choosing a representative in each cyclic class.
Received: 20.02.2007
English version:
Problems of Information Transmission, 2007, Volume 43, Issue 3, Pages 199–212
DOI: https://doi.org/10.1134/S0032946007030039
Bibliographic databases:
Document Type: Article
UDC: 621.391.5
Language: Russian
Citation: V. I. Levenshtein, “Conflict-Avoiding Codes and Cyclic Triple Systems”, Probl. Peredachi Inf., 43:3 (2007), 39–53; Problems Inform. Transmission, 43:3 (2007), 199–212
Citation in format AMSBIB
\Bibitem{Lev07}
\by V.~I.~Levenshtein
\paper Conflict-Avoiding Codes and Cyclic Triple Systems
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 3
\pages 39--53
\mathnet{http://mi.mathnet.ru/ppi17}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360016}
\zmath{https://zbmath.org/?q=an:1136.94328}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 3
\pages 199--212
\crossref{https://doi.org/10.1134/S0032946007030039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255782800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35948969770}
Linking options:
  • https://www.mathnet.ru/eng/ppi17
  • https://www.mathnet.ru/eng/ppi/v43/i3/p39
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025