Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1993, Volume 29, Issue 1, Pages 92–98 (Mi ppi168)  

Communication Network Theory

Poisson Limit Theorem for Message Switching Networks with Low Transit Traffics

M. Ya. Kelbert
Abstract: A sequence of communication networks with increasing branching and low traffic intensities on the transit routes is considered. The limiting message throughput delay distribution is shown to be the same that for the series of stochastically independent queues. This is an example of the so-called Poisson conjecture being valid for a sufficiently complex queueing network.
Received: 23.01.1992
Bibliographic databases:
Document Type: Article
UDC: 621.394.74:519.23
Language: Russian
Citation: M. Ya. Kelbert, “Poisson Limit Theorem for Message Switching Networks with Low Transit Traffics”, Probl. Peredachi Inf., 29:1 (1993), 92–98; Problems Inform. Transmission, 29:1 (1993), 80–84
Citation in format AMSBIB
\Bibitem{Kel93}
\by M.~Ya.~Kelbert
\paper Poisson Limit Theorem for Message Switching Networks with Low Transit Traffics
\jour Probl. Peredachi Inf.
\yr 1993
\vol 29
\issue 1
\pages 92--98
\mathnet{http://mi.mathnet.ru/ppi168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1215194}
\zmath{https://zbmath.org/?q=an:0797.94010}
\transl
\jour Problems Inform. Transmission
\yr 1993
\vol 29
\issue 1
\pages 80--84
Linking options:
  • https://www.mathnet.ru/eng/ppi168
  • https://www.mathnet.ru/eng/ppi/v29/i1/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024