|
Problemy Peredachi Informatsii, 1981, Volume 17, Issue 4, Pages 63–72
(Mi ppi1419)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Coding Theory
To the Optimization of Shortened Hamming Codes
N. R. Toropov, L. N. Kaplan, Yu. B. Smerkis, G. L. Tauglikh
Abstract:
Optimization is treated as reduction of the number of words of weight $d$, where $d$ is the code distance. For $d=3$, the authors propose methods of synthesizing codes of arbitrary length with minimum number of words of weight 3. For extended codes with $d=4$, asymptotically coincident upper (guaranteed attainable) and lower bounds are constructed for the minimum number of words of weight 4. Classes of codes that attain the lower bound or are close to it are indicated.
Received: 05.09.1979 Revised: 30.03.1981
Citation:
N. R. Toropov, L. N. Kaplan, Yu. B. Smerkis, G. L. Tauglikh, “To the Optimization of Shortened Hamming Codes”, Probl. Peredachi Inf., 17:4 (1981), 63–72; Problems Inform. Transmission, 17:4 (1981), 261–267
Linking options:
https://www.mathnet.ru/eng/ppi1419 https://www.mathnet.ru/eng/ppi/v17/i4/p63
|
Statistics & downloads: |
Abstract page: | 366 | Full-text PDF : | 204 |
|