Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1992, Volume 28, Issue 2, Pages 54–61 (Mi ppi1346)  

Coding Theory

Partitioning of a Vector Space into Orbits by the Action of Automorphism Groups of Some Codes

Yu. L. Sagalovich
Abstract: Exact and asymptotic formulas are obtained for counting the number of orbits into which the space of $q^n$ vectors of length $n$ over the field $GF(q)$ is partitioned by the action of the minimal automorphism group of an arbitrary cyclic code and the automorphism group of the extended BCH code – an affine group. The calculations are carried out for $q=2$, $n=7,15,31$ and 8, 16, 32.
Received: 29.01.1991
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: Yu. L. Sagalovich, “Partitioning of a Vector Space into Orbits by the Action of Automorphism Groups of Some Codes”, Probl. Peredachi Inf., 28:2 (1992), 54–61; Problems Inform. Transmission, 28:2 (1992), 147–153
Citation in format AMSBIB
\Bibitem{Sag92}
\by Yu.~L.~Sagalovich
\paper Partitioning of a~Vector Space into Orbits by the Action of Automorphism Groups of Some Codes
\jour Probl. Peredachi Inf.
\yr 1992
\vol 28
\issue 2
\pages 54--61
\mathnet{http://mi.mathnet.ru/ppi1346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1178418}
\zmath{https://zbmath.org/?q=an:0790.94021}
\transl
\jour Problems Inform. Transmission
\yr 1992
\vol 28
\issue 2
\pages 147--153
Linking options:
  • https://www.mathnet.ru/eng/ppi1346
  • https://www.mathnet.ru/eng/ppi/v28/i2/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024