Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1992, Volume 28, Issue 2, Pages 47–53 (Mi ppi1345)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

New Packings on a Finite-Dimensional Euclidean Sphere

V. A. Zinov'ev, T. Ericson
Abstract: A spherical code is a finite set of points in a sphere of radius 1 in the $n$-dimensional Euclidean space with a given minimum distance $\rho$. The cardinality of the best spherical code with distance $\rho=1$ is called the contact number $\tau_n$. Leech and Sloane (1971) demonstrated how to construct spherical codes using binary block cods (both constant-weight and ordinary). Here we propose new constructions that improve the lower bounds on the cardinality of spherical codes with $\rho\leq 1$ for $n\leq 64$.
Received: 12.05.1991
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:513
Language: Russian
Citation: V. A. Zinov'ev, T. Ericson, “New Packings on a Finite-Dimensional Euclidean Sphere”, Probl. Peredachi Inf., 28:2 (1992), 47–53; Problems Inform. Transmission, 28:2 (1992), 141–146
Citation in format AMSBIB
\Bibitem{ZinEri92}
\by V.~A.~Zinov'ev, T.~Ericson
\paper New Packings on a Finite-Dimensional Euclidean Sphere
\jour Probl. Peredachi Inf.
\yr 1992
\vol 28
\issue 2
\pages 47--53
\mathnet{http://mi.mathnet.ru/ppi1345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1178417}
\zmath{https://zbmath.org/?q=an:0841.52012}
\transl
\jour Problems Inform. Transmission
\yr 1992
\vol 28
\issue 2
\pages 141--146
Linking options:
  • https://www.mathnet.ru/eng/ppi1345
  • https://www.mathnet.ru/eng/ppi/v28/i2/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024