Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2002, Volume 38, Issue 4, Pages 56–84 (Mi ppi1325)  

This article is cited in 14 scientific papers (total in 14 papers)

Information Theory and Coding Theory

Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction

V. A. Zinov'ev, D. V. Zinov'ev
References:
Abstract: We enumerate binary extended nonlinear perfect codes of length 16 obtained by the generalized concatenated construction (GC-construction). There are 15 different types of such codes. They are defined by pairs of MDS codes $A_i:(4,2,64)_4$. For every pair, we give the number of nonequivalent codes of this type. In total, there are 285 nonequivalent binary extended nonlinear perfect codes of length 16 obtained by the GC-construction, including the Hamming (i.e., linear) code. Thus, we obtain all binary extended perfect codes of length 16 and rank 13. Their total number is equal to 272.
Received: 09.10.2001
Revised: 15.08.2002
English version:
Problems of Information Transmission, 2002, Volume 38, Issue 4, Pages 296–322
DOI: https://doi.org/10.1023/A:1022049912988
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. A. Zinov'ev, D. V. Zinov'ev, “Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction”, Probl. Peredachi Inf., 38:4 (2002), 56–84; Problems Inform. Transmission, 38:4 (2002), 296–322
Citation in format AMSBIB
\Bibitem{ZinZin02}
\by V.~A.~Zinov'ev, D.~V.~Zinov'ev
\paper Binary Extended Perfect Codes of Length~16 by the Generalized Concatenated Construction
\jour Probl. Peredachi Inf.
\yr 2002
\vol 38
\issue 4
\pages 56--84
\mathnet{http://mi.mathnet.ru/ppi1325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101741}
\zmath{https://zbmath.org/?q=an:1027.94030}
\transl
\jour Problems Inform. Transmission
\yr 2002
\vol 38
\issue 4
\pages 296--322
\crossref{https://doi.org/10.1023/A:1022049912988}
Linking options:
  • https://www.mathnet.ru/eng/ppi1325
  • https://www.mathnet.ru/eng/ppi/v38/i4/p56
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :140
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024