Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2002, Volume 38, Issue 4, Pages 37–55 (Mi ppi1324)  

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory and Coding Theory

A Distance Measure Tailored to Tailbiting Codes

M. Handlery, S. Höst, R. Johannesson, V. V. Zyablov
References:
Abstract: The error-correcting capability of tailbiting codes generated by convolutional encoders is described. In order to obtain a description beyond what the minimum distance $d_{\min}$ of the tailbiting code implies, the active tailbiting segment distance is introduced. The description of correctable error patterns via active distances leads to an upper bound on the decoding block error probability of tailbiting codes. The necessary length of a tailbiting code so that its minimum distance is equal to the free distance $d_{\mathrm{free}}$ of the convolutional code encoded by the same encoder is easily obtained from the active tailbiting segment distance. This is useful when designing and analyzing concatenated convolutional codes with component codes that are terminated using the tailbiting method. Lower bounds on the active tailbiting segment distance and an upper bound on the ratio between the tailbiting length and memory of the convolutional generator matrix such that $d_{\min}$ equals $d_{\mathrm{free}}$ are derived. Furthermore, affine lower bounds on the active tailbiting segment distance suggest that good tailbiting codes are generated by convolutional encoders with large active-distance slopes.
Received: 19.06.2002
Revised: 29.08.2002
English version:
Problems of Information Transmission, 2002, Volume 38, Issue 4, Pages 280–295
DOI: https://doi.org/10.1023/A:1022097828917
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: M. Handlery, S. Höst, R. Johannesson, V. V. Zyablov, “A Distance Measure Tailored to Tailbiting Codes”, Probl. Peredachi Inf., 38:4 (2002), 37–55; Problems Inform. Transmission, 38:4 (2002), 280–295
Citation in format AMSBIB
\Bibitem{HanHosJoh02}
\by M.~Handlery, S.~H\"ost, R.~Johannesson, V.~V.~Zyablov
\paper A Distance Measure Tailored to Tailbiting Codes
\jour Probl. Peredachi Inf.
\yr 2002
\vol 38
\issue 4
\pages 37--55
\mathnet{http://mi.mathnet.ru/ppi1324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101740}
\zmath{https://zbmath.org/?q=an:1021.94022}
\transl
\jour Problems Inform. Transmission
\yr 2002
\vol 38
\issue 4
\pages 280--295
\crossref{https://doi.org/10.1023/A:1022097828917}
Linking options:
  • https://www.mathnet.ru/eng/ppi1324
  • https://www.mathnet.ru/eng/ppi/v38/i4/p37
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :103
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024