Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2004, Volume 40, Issue 2, Pages 37–49 (Mi ppi131)  

Coding Theory

On the Nonexistence of Ternary $[284,6,188]$ Codes

R. N. Daskalov, E. Metodieva

Technical University of Gabrovo
References:
Abstract: Let $[n,k,d]_q$ codes be linear codes of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. Let $n_q(k,d)$ be the smallest value of $n$ for which there exists an $[n,k,d]_q$ code. It is known from [1, 2] that $284\leq n_3(6,188)\leq 285$ and $285\leq n_3(6,189)\leq 286$. In this paper, the nonexistence of $[284,6,118]_3$ codes is proved, whence we get $n_3(6,118)=285$ and $n_3(6,189)=286$.
Received: 20.08.2003
Revised: 08.01.2004
English version:
Problems of Information Transmission, 2004, Volume 40, Issue 2, Pages 135–146
DOI: https://doi.org/10.1023/B:PRIT.0000043927.19508.8b
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: R. N. Daskalov, E. Metodieva, “On the Nonexistence of Ternary $[284,6,188]$ Codes”, Probl. Peredachi Inf., 40:2 (2004), 37–49; Problems Inform. Transmission, 40:2 (2004), 135–146
Citation in format AMSBIB
\Bibitem{DasMet04}
\by R.~N.~Daskalov, E.~Metodieva
\paper On the Nonexistence of Ternary $[284,6,188]$ Codes
\jour Probl. Peredachi Inf.
\yr 2004
\vol 40
\issue 2
\pages 37--49
\mathnet{http://mi.mathnet.ru/ppi131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099007}
\zmath{https://zbmath.org/?q=an:1096.94036}
\transl
\jour Problems Inform. Transmission
\yr 2004
\vol 40
\issue 2
\pages 135--146
\crossref{https://doi.org/10.1023/B:PRIT.0000043927.19508.8b}
Linking options:
  • https://www.mathnet.ru/eng/ppi131
  • https://www.mathnet.ru/eng/ppi/v40/i2/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024