|
Problemy Peredachi Informatsii, 2004, Volume 40, Issue 2, Pages 37–49
(Mi ppi131)
|
|
|
|
Coding Theory
On the Nonexistence of Ternary $[284,6,188]$ Codes
R. N. Daskalov, E. Metodieva Technical University of Gabrovo
Abstract:
Let $[n,k,d]_q$ codes be linear codes of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. Let $n_q(k,d)$ be the smallest value of $n$ for which there exists an $[n,k,d]_q$ code. It is known from [1, 2] that $284\leq n_3(6,188)\leq 285$ and $285\leq n_3(6,189)\leq 286$. In this paper, the nonexistence of $[284,6,118]_3$ codes is proved, whence we get $n_3(6,118)=285$ and $n_3(6,189)=286$.
Received: 20.08.2003 Revised: 08.01.2004
Citation:
R. N. Daskalov, E. Metodieva, “On the Nonexistence of Ternary $[284,6,188]$ Codes”, Probl. Peredachi Inf., 40:2 (2004), 37–49; Problems Inform. Transmission, 40:2 (2004), 135–146
Linking options:
https://www.mathnet.ru/eng/ppi131 https://www.mathnet.ru/eng/ppi/v40/i2/p37
|
|