Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2008, Volume 44, Issue 4, Pages 72–91 (Mi ppi1290)  

This article is cited in 9 scientific papers (total in 9 papers)

Communication Network Theory

Limit Theorems for Queueing Systems with Doubly Stochastic Poisson Arrivals (Heavy Traffic Conditions)

L. G. Afanas'eva, E. E. Bashtova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Probability Theory Chair
References:
Abstract: We consider a single-server queueing system with a doubly stochastic Poisson arrival flow under heavy traffic conditions. We prove the convergence of the limiting stationary or periodic distribution to the exponential distribution. In a scheme of series, we consider the $C$-convergence of the waiting time process to a diffusion process with constant coefficients and reflection at the zero boundary. Examples of computation of the diffusion coefficient in terms of characteristics of the arrival flow and service time are given.
Received: 18.01.2008
Revised: 05.06.2008
English version:
Problems of Information Transmission, 2008, Volume 44, Issue 4, Pages 352–369
DOI: https://doi.org/10.1134/S0032946008040078
Bibliographic databases:
Document Type: Article
UDC: 621.394/395.74:519.2
Language: Russian
Citation: L. G. Afanas'eva, E. E. Bashtova, “Limit Theorems for Queueing Systems with Doubly Stochastic Poisson Arrivals (Heavy Traffic Conditions)”, Probl. Peredachi Inf., 44:4 (2008), 72–91; Problems Inform. Transmission, 44:4 (2008), 352–369
Citation in format AMSBIB
\Bibitem{AfaBas08}
\by L.~G.~Afanas'eva, E.~E.~Bashtova
\paper Limit Theorems for Queueing Systems with Doubly Stochastic Poisson Arrivals (Heavy Traffic Conditions)
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 4
\pages 72--91
\mathnet{http://mi.mathnet.ru/ppi1290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489465}
\zmath{https://zbmath.org/?q=an:1175.60079}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 4
\pages 352--369
\crossref{https://doi.org/10.1134/S0032946008040078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262811900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59349091134}
Linking options:
  • https://www.mathnet.ru/eng/ppi1290
  • https://www.mathnet.ru/eng/ppi/v44/i4/p72
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024