Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2004, Volume 40, Issue 2, Pages 3–18 (Mi ppi129)  

This article is cited in 10 scientific papers (total in 10 papers)

Coding Theory

Symmetric Rank Codes

È. M. Gabidulin, N. I. Pilipchuk

Moscow Institute of Physics and Technology
References:
Abstract: As is well known, a finite field $\mathbb K_n=GF(q^n)$ can be described in terms of $(n\times n)$ matrices $A$ over the field $\mathbb K=GF(q)$ such that their powers $A^i$, $i=1,2,\dots,q^n-1$, correspond to all nonzero elements of the field. It is proved that, for fields $\mathbb K_n$ of characteristic 2, such a matrix $A$ can be chosen to be symmetric. Several constructions of field-representing symmetric matrices are given. These matrices $A^i$ together with the all-zero matrix can be considered as a $\mathbb K_n$-linear matrix code in the rank metric with maximum rank distance $d=n$ and maximum possible cardinality $q^n$. These codes are called symmetric rank codes. In the vector representation, such codes are maximum rank distance (MRD) linear $[n,1,n]$ codes, which allows one to use known rank-error-correcting algorithms. For symmetric codes, an algorithm of erasure symmetrization is proposed, which considerably reduces the decoding complexity as compared with standard algorithms.
It is also shown that a linear $[n,k,d=n-k+1]$ MRD code $\nu_k$ containing the above-mentioned one-dimensional symmetric code as a subcode has the following property: the corresponding transposed code is also $\mathbb K_n$-linear. Such codes have an extended capability of correcting symmetric errors and erasures.
Received: 10.04.2003
Revised: 04.03.2004
English version:
Problems of Information Transmission, 2004, Volume 40, Issue 2, Pages 103–117
DOI: https://doi.org/10.1023/B:PRIT.0000043925.67309.c6
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: È. M. Gabidulin, N. I. Pilipchuk, “Symmetric Rank Codes”, Probl. Peredachi Inf., 40:2 (2004), 3–18; Problems Inform. Transmission, 40:2 (2004), 103–117
Citation in format AMSBIB
\Bibitem{GabPil04}
\by \`E.~M.~Gabidulin, N.~I.~Pilipchuk
\paper Symmetric Rank Codes
\jour Probl. Peredachi Inf.
\yr 2004
\vol 40
\issue 2
\pages 3--18
\mathnet{http://mi.mathnet.ru/ppi129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099005}
\zmath{https://zbmath.org/?q=an:1085.94021}
\transl
\jour Problems Inform. Transmission
\yr 2004
\vol 40
\issue 2
\pages 103--117
\crossref{https://doi.org/10.1023/B:PRIT.0000043925.67309.c6}
Linking options:
  • https://www.mathnet.ru/eng/ppi129
  • https://www.mathnet.ru/eng/ppi/v40/i2/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024