Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2008, Volume 44, Issue 3, Pages 19–32 (Mi ppi1277)  

This article is cited in 11 scientific papers (total in 11 papers)

Information Theory

Mutual Information, Variation, and Fano's Inequality

V. V. Prelova, E. C. van der Meulenb

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
b Katholieke Universiteit Leuven
References:
Abstract: Some upper and lower bounds are obtained for the maximum of the absolute value of the difference between the mutual information $|I(X;Y)-I(X';Y')|$ of two pairs of discrete random variables $(X,Y)$ and $(X',Y')$ via the variational distance between the probability distributions of these pairs. In particular, the upper bound obtained here substantially generalizes and improves the upper bound of [1]. In some special cases, our upper and lower bounds coincide or are rather close. It is also proved that the lower bound is asymptotically tight in the case where the variational distance between $(X,Y)$ and $(X',Y')$ tends to zero.
Received: 15.05.2008
English version:
Problems of Information Transmission, 2008, Volume 44, Issue 3, Pages 185–197
DOI: https://doi.org/10.1134/S0032946008030022
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: V. V. Prelov, E. C. van der Meulen, “Mutual Information, Variation, and Fano's Inequality”, Probl. Peredachi Inf., 44:3 (2008), 19–32; Problems Inform. Transmission, 44:3 (2008), 185–197
Citation in format AMSBIB
\Bibitem{PreVan08}
\by V.~V.~Prelov, E.~C.~van der Meulen
\paper Mutual Information, Variation, and Fano's Inequality
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 3
\pages 19--32
\mathnet{http://mi.mathnet.ru/ppi1277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2467418}
\zmath{https://zbmath.org/?q=an:1173.94401}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 3
\pages 185--197
\crossref{https://doi.org/10.1134/S0032946008030022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260150400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54349102809}
Linking options:
  • https://www.mathnet.ru/eng/ppi1277
  • https://www.mathnet.ru/eng/ppi/v44/i3/p19
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024