Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2008, Volume 44, Issue 3, Pages 3–18 (Mi ppi1276)  

This article is cited in 111 scientific papers (total in 111 papers)

Information Theory

Entanglement-Breaking Channels in Infinite Dimensions

A. S. Holevo

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In the first part of the paper we give a representation for entanglement-breaking channels in separable Hilbert space that generalizes the “Kraus decomposition with rank-one operators” and use it to describe complementary channels. We also note that coherent information for antidegradable channel is always nonpositive. In the second part, we give necessary and sufficient condition for entanglement breaking for the general quantum Gaussian channel. Application of this condition to one-mode channels provides several new cases where the additivity conjecture holds in the strongest form.
Received: 22.02.2008
Revised: 25.04.2008
English version:
Problems of Information Transmission, 2008, Volume 44, Issue 3, Pages 171–184
DOI: https://doi.org/10.1134/S0032946008030010
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: A. S. Holevo, “Entanglement-Breaking Channels in Infinite Dimensions”, Probl. Peredachi Inf., 44:3 (2008), 3–18; Problems Inform. Transmission, 44:3 (2008), 171–184
Citation in format AMSBIB
\Bibitem{Hol08}
\by A.~S.~Holevo
\paper Entanglement-Breaking Channels in Infinite Dimensions
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/ppi1276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2467417}
\zmath{https://zbmath.org/?q=an:1173.81304}
\elib{https://elibrary.ru/item.asp?id=11705234}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 3
\pages 171--184
\crossref{https://doi.org/10.1134/S0032946008030010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260150400001}
\elib{https://elibrary.ru/item.asp?id=13593502}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54449101075}
Linking options:
  • https://www.mathnet.ru/eng/ppi1276
  • https://www.mathnet.ru/eng/ppi/v44/i3/p3
  • This publication is cited in the following 111 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:699
    Full-text PDF :196
    References:85
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024