Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2008, Volume 44, Issue 1, Pages 3–14 (Mi ppi1262)  

This article is cited in 38 scientific papers (total in 38 papers)

Coding Theory

Modeling Hexagonal Constellations with Eisenstein–Jacobi Graphs

C. Martineza, E. Stafforda, R. Beividea, È. M. Gabidulinb

a Universidad de Cantabria, Santander, Spain
b Moscow Institute of Physics and Technology
References:
Abstract: A set of signal points is called a hexagonal constellation if it is possible to define a metric so that each point has exactly six neighbors at distance 1 from it. As sets of signal points, quotient rings of the ring of Eisenstein–Jacobi integers are considered. For each quotient ring, the corresponding graph is defined. In turn, the distance between two points of a quotient ring is defined as the corresponding graph distance. Under certain restrictions, a quotient ring is a hexagonal constellation with respect to this metric. For the considered hexagonal constellations, some classes of perfect codes are known. Using graphs leads to a new way of constructing these codes based on solving a standard graph-theoretic problem of finding a perfect dominating set. Also, a relation between the proposed metric and the well-known Lee metric is considered.
Received: 18.10.2006
Revised: 01.11.2007
English version:
Problems of Information Transmission, 2008, Volume 44, Issue 1, Pages 1–11
DOI: https://doi.org/10.1134/S0032946008010018
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: C. Martinez, E. Stafford, R. Beivide, È. M. Gabidulin, “Modeling Hexagonal Constellations with Eisenstein–Jacobi Graphs”, Probl. Peredachi Inf., 44:1 (2008), 3–14; Problems Inform. Transmission, 44:1 (2008), 1–11
Citation in format AMSBIB
\Bibitem{MarStaBei08}
\by C.~Martinez, E.~Stafford, R.~Beivide, \`E.~M.~Gabidulin
\paper Modeling Hexagonal Constellations with Eisenstein--Jacobi Graphs
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/ppi1262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2416750}
\zmath{https://zbmath.org/?q=an:1156.05059}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1134/S0032946008010018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255537100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44349186896}
Linking options:
  • https://www.mathnet.ru/eng/ppi1262
  • https://www.mathnet.ru/eng/ppi/v44/i1/p3
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024