Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2009, Volume 45, Issue 1, Pages 27–35 (Mi ppi1256)  

This article is cited in 6 scientific papers (total in 6 papers)

Coding Theory

On transitive partitions of an $n$-cube into codes

F. I. Solov'evaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
Full-text PDF (596 kB) Citations (6)
References:
Abstract: We present methods to construct transitive partitions of the set $E^n$ of all binary vectors of length $n$ into codes. In particular, we show that for all $n=2k-1$, $k\ge 3$, there exist transitive partitions of $E^n$ into perfect transitive codes of length $n$.
Received: 18.01.2008
Revised: 26.09.2008
English version:
Problems of Information Transmission, 2009, Volume 45, Issue 1, Pages 23–31
DOI: https://doi.org/10.1134/S0032946009010037
Bibliographic databases:
Document Type: Article
UDC: 621.391.15:514
Language: Russian
Citation: F. I. Solov'eva, “On transitive partitions of an $n$-cube into codes”, Probl. Peredachi Inf., 45:1 (2009), 27–35; Problems Inform. Transmission, 45:1 (2009), 23–31
Citation in format AMSBIB
\Bibitem{Sol09}
\by F.~I.~Solov'eva
\paper On transitive partitions of an $n$-cube into codes
\jour Probl. Peredachi Inf.
\yr 2009
\vol 45
\issue 1
\pages 27--35
\mathnet{http://mi.mathnet.ru/ppi1256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2513160}
\zmath{https://zbmath.org/?q=an:1173.94462}
\transl
\jour Problems Inform. Transmission
\yr 2009
\vol 45
\issue 1
\pages 23--31
\crossref{https://doi.org/10.1134/S0032946009010037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265776300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65549095379}
Linking options:
  • https://www.mathnet.ru/eng/ppi1256
  • https://www.mathnet.ru/eng/ppi/v45/i1/p27
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :93
    References:60
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024