Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1982, Volume 18, Issue 3, Pages 3–6 (Mi ppi1231)  

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory and Coding Theory

Goppa Codes That Are Better Than the Varshamov–Gilbert Bound

M. A. Tsfasman
Full-text PDF (491 kB) Citations (2)
Abstract: It is shown that there exist an infinite series of $q$-ary linear Goppa codes that arise from objects of algebraic geometry, whose parameters are asymptotically higher (as $n\to\infty$) than the Varshamov–Gilbert bound.
Received: 26.05.1981
Revised: 29.12.1981
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: M. A. Tsfasman, “Goppa Codes That Are Better Than the Varshamov–Gilbert Bound”, Probl. Peredachi Inf., 18:3 (1982), 3–6; Problems Inform. Transmission, 18:3 (1982), 163–166
Citation in format AMSBIB
\Bibitem{Tsf82}
\by M.~A.~Tsfasman
\paper Goppa Codes That Are Better Than the Varshamov--Gilbert Bound
\jour Probl. Peredachi Inf.
\yr 1982
\vol 18
\issue 3
\pages 3--6
\mathnet{http://mi.mathnet.ru/ppi1231}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=711895}
\zmath{https://zbmath.org/?q=an:0503.94025}
\transl
\jour Problems Inform. Transmission
\yr 1982
\vol 18
\issue 3
\pages 163--166
Linking options:
  • https://www.mathnet.ru/eng/ppi1231
  • https://www.mathnet.ru/eng/ppi/v18/i3/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:793
    Full-text PDF :325
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024