|
Problemy Peredachi Informatsii, 1983, Volume 19, Issue 4, Pages 3–10
(Mi ppi1197)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Information Theory and Coding Theory
Characterization of Two Classes of Codes that Attain the Griesmer Bound
S. M. Dodunekov, N. L. Manev
Abstract:
Linear binary codes are considered. It is shown that, to within isomorphism, there exists a unique code with parameters [$2^k-2^{k-i}-3$, $k$, $2^{k-1}-2^{k-i-1}-2$], $2\leq i\leq k-4$, and two nonisomorphic codes with parameters [$2^k-11$, $k$, $2^{k-1}-6$], $k\geq 5$.
Received: 04.05.1982
Citation:
S. M. Dodunekov, N. L. Manev, “Characterization of Two Classes of Codes that Attain the Griesmer Bound”, Probl. Peredachi Inf., 19:4 (1983), 3–10; Problems Inform. Transmission, 19:4 (1983), 253–259
Linking options:
https://www.mathnet.ru/eng/ppi1197 https://www.mathnet.ru/eng/ppi/v19/i4/p3
|
Statistics & downloads: |
Abstract page: | 193 | Full-text PDF : | 78 | First page: | 1 |
|