Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2005, Volume 41, Issue 4, Pages 78–96 (Mi ppi116)  

This article is cited in 62 scientific papers (total in 62 papers)

Methods of Signal Processing

Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

A. B. Yuditskiia, A. V. Nazinb, A. B. Tsybakovcd, N. Vayatisd

a Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité — Informatique, Mathématiques et Applications de Grenoble
b Institute of Control Sciences, Russian Academy of Sciences
c Institute for Information Transmission Problems, Russian Academy of Sciences
d Université Pierre & Marie Curie, Paris VI
References:
Abstract: We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the $\ell_1$-constraint. It is defined by a stochastic version of the mirror descent algorithm which performs descent of the gradient type in the dual space with an additional averaging. The main result of the paper is an upper bound for the expected accuracy of the proposed estimator. This bound is of the order $C\sqrt{(\log M)/t}$ with an explicit and small constant factor $C$, where $M$ is the dimension of the problem and $t$ stands for the sample size. A similar bound is proved for a more general setting, which covers, in particular, the regression model with squared loss.
Received: 16.03.2005
Revised: 26.07.2005
English version:
Problems of Information Transmission, 2005, Volume 41, Issue 4, Pages 368–384
DOI: https://doi.org/10.1007/s11122-006-0005-2
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: A. B. Yuditskii, A. V. Nazin, A. B. Tsybakov, N. Vayatis, “Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging”, Probl. Peredachi Inf., 41:4 (2005), 78–96; Problems Inform. Transmission, 41:4 (2005), 368–384
Citation in format AMSBIB
\Bibitem{YudNazTsy05}
\by A.~B.~Yuditskii, A.~V.~Nazin, A.~B.~Tsybakov, N.~Vayatis
\paper Recursive Aggregation of
Estimators by Mirror Descent Algorithm with Averaging
\jour Probl. Peredachi Inf.
\yr 2005
\vol 41
\issue 4
\pages 78--96
\mathnet{http://mi.mathnet.ru/ppi116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2198228}
\zmath{https://zbmath.org/?q=an:1123.62044}
\transl
\jour Problems Inform. Transmission
\yr 2005
\vol 41
\issue 4
\pages 368--384
\crossref{https://doi.org/10.1007/s11122-006-0005-2}
Linking options:
  • https://www.mathnet.ru/eng/ppi116
  • https://www.mathnet.ru/eng/ppi/v41/i4/p78
    Remarks
    This publication is cited in the following 62 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:823
    Full-text PDF :357
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024