Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1984, Volume 20, Issue 1, Pages 12–18 (Mi ppi1117)  

This article is cited in 3 scientific papers (total in 3 papers)

Coding Theory

Minimum Possible Block Length of a Linear Binary Code for Some Distances

S. M. Dodunekov, N. L. Manev
Full-text PDF (642 kB) Citations (3)
Abstract: Linear binary codes are considered. It is shown that if $d=2^{k-1}-2{k-i-1}-2^i$ or $2{k-1}-2^{k-i-1}-2^i-2$ and $k\geq2i+2$, the minimum possible block length of a code of dimension $k$ with code distance $d$ is
$$ 1=\sum^{k-1}_{j=0}\biggl\lceil\frac d{2^j}\biggr\rceil. $$
Received: 04.05.1982
Bibliographic databases:
Document Type: Article
UDC: 621.391.15:519.72
Language: Russian
Citation: S. M. Dodunekov, N. L. Manev, “Minimum Possible Block Length of a Linear Binary Code for Some Distances”, Probl. Peredachi Inf., 20:1 (1984), 12–18; Problems Inform. Transmission, 20:1 (1984), 8–14
Citation in format AMSBIB
\Bibitem{DodMan84}
\by S.~M.~Dodunekov, N.~L.~Manev
\paper Minimum Possible Block Length of a~Linear Binary Code for Some Distances
\jour Probl. Peredachi Inf.
\yr 1984
\vol 20
\issue 1
\pages 12--18
\mathnet{http://mi.mathnet.ru/ppi1117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=776763}
\zmath{https://zbmath.org/?q=an:0546.94010}
\transl
\jour Problems Inform. Transmission
\yr 1984
\vol 20
\issue 1
\pages 8--14
Linking options:
  • https://www.mathnet.ru/eng/ppi1117
  • https://www.mathnet.ru/eng/ppi/v20/i1/p12
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024