|
Problemy Peredachi Informatsii, 1984, Volume 20, Issue 1, Pages 12–18
(Mi ppi1117)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Coding Theory
Minimum Possible Block Length of a Linear Binary Code for Some Distances
S. M. Dodunekov, N. L. Manev
Abstract:
Linear binary codes are considered. It is shown that if $d=2^{k-1}-2{k-i-1}-2^i$ or $2{k-1}-2^{k-i-1}-2^i-2$ and $k\geq2i+2$, the minimum possible block length of a code of dimension $k$ with code distance $d$ is
$$
1=\sum^{k-1}_{j=0}\biggl\lceil\frac d{2^j}\biggr\rceil.
$$
Received: 04.05.1982
Citation:
S. M. Dodunekov, N. L. Manev, “Minimum Possible Block Length of a Linear Binary Code for Some Distances”, Probl. Peredachi Inf., 20:1 (1984), 12–18; Problems Inform. Transmission, 20:1 (1984), 8–14
Linking options:
https://www.mathnet.ru/eng/ppi1117 https://www.mathnet.ru/eng/ppi/v20/i1/p12
|
Statistics & downloads: |
Abstract page: | 239 | Full-text PDF : | 99 |
|