Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1977, Volume 13, Issue 1, Pages 26–32 (Mi ppi1064)  

Information Theory

On a Problem of Separate Coding of Two Dependent Sources

V. N. Koshelev
Abstract: The random-coding procedure is employed to solve the Slepian–Wolf problem of compression of information produced by two dependent sources. An upper bound for the error probability is determined and a general formula for an arbitrary finite number of sources is given.
Received: 21.07.1975
Revised: 24.05.1976
Bibliographic databases:
Document Type: Article
UDC: 621.391.1, 519.27
Language: Russian
Citation: V. N. Koshelev, “On a Problem of Separate Coding of Two Dependent Sources”, Probl. Peredachi Inf., 13:1 (1977), 26–32; Problems Inform. Transmission, 13:1 (1977), 18–22
Citation in format AMSBIB
\Bibitem{Kos77}
\by V.~N.~Koshelev
\paper On a Problem of Separate Coding of Two Dependent Sources
\jour Probl. Peredachi Inf.
\yr 1977
\vol 13
\issue 1
\pages 26--32
\mathnet{http://mi.mathnet.ru/ppi1064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=497323}
\zmath{https://zbmath.org/?q=an:0355.94032}
\transl
\jour Problems Inform. Transmission
\yr 1977
\vol 13
\issue 1
\pages 18--22
Linking options:
  • https://www.mathnet.ru/eng/ppi1064
  • https://www.mathnet.ru/eng/ppi/v13/i1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024