Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1974, Volume 10, Issue 3, Pages 94–103 (Mi ppi1046)  

Large Systems

Gibbs Description of a System of Random Variables

O. K. Kozlov
Abstract: Necessary and sufficient conditions are given for a joint-distributed countable set of random variables, all of whose conditional distribution functions are absolutely continuous with respect to a certain finite measure, to be representable in Gibbs form with a potential whose strong norm is pointwise finite.
Received: 19.06.1973
Bibliographic databases:
Document Type: Article
UDC: 519.25
Language: Russian
Citation: O. K. Kozlov, “Gibbs Description of a System of Random Variables”, Probl. Peredachi Inf., 10:3 (1974), 94–103; Problems Inform. Transmission, 10:3 (1974), 258–265
Citation in format AMSBIB
\Bibitem{Koz74}
\by O.~K.~Kozlov
\paper Gibbs Description of a System of Random Variables
\jour Probl. Peredachi Inf.
\yr 1974
\vol 10
\issue 3
\pages 94--103
\mathnet{http://mi.mathnet.ru/ppi1046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=467970}
\zmath{https://zbmath.org/?q=an:0325.60096}
\transl
\jour Problems Inform. Transmission
\yr 1974
\vol 10
\issue 3
\pages 258--265
Linking options:
  • https://www.mathnet.ru/eng/ppi1046
  • https://www.mathnet.ru/eng/ppi/v10/i3/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024