Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2015, Volume 56, Issue 2, Pages 3–14
DOI: https://doi.org/10.15372/PMTF20150201
(Mi pmtf959)
 

This article is cited in 15 scientific papers (total in 15 papers)

Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel

E. I. Borzenko, G. R. Shrager

Tomsk State University, Tomsk, 634050, Russia
Abstract: The effect of various models of the dynamics of the three-phase contact line on the flow characteristics during filling of a plane channel is investigated. The system of constitutive equations is solved numerically using a technique based on the combined use of the SIMPLE algorithm and the method of invariants. Different methods for calculating the motion of the contact point for slip and no-slip conditions for a dynamic contact angle θ=π, neglecting surface tension on the free boundary are considered. It is shown that in the whole computational domain, except in a small vicinity of the contact point, the kinematic characteristics of the flow and the distributions of the dissipation function and shear stress are slightly dependent on the selected calculation method of the motion of the contact point.
Keywords: three-phase contact line, free boundary, no-slip, slip, calculation method, dissipation function, shear stress, convergence.
Received: 03.12.2013
Revised: 07.02.2014
English version:
Journal of Applied Mechanics and Technical Physics, 2015, Volume 56, Issue 2, Pages 167–176
DOI: https://doi.org/10.1134/S0021894415020017
Bibliographic databases:
Document Type: Article
UDC: 532.64
Language: Russian
Citation: E. I. Borzenko, G. R. Shrager, “Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel”, Prikl. Mekh. Tekh. Fiz., 56:2 (2015), 3–14; J. Appl. Mech. Tech. Phys., 56:2 (2015), 167–176
Citation in format AMSBIB
\Bibitem{BorShr15}
\by E.~I.~Borzenko, G.~R.~Shrager
\paper Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2015
\vol 56
\issue 2
\pages 3--14
\mathnet{http://mi.mathnet.ru/pmtf959}
\crossref{https://doi.org/10.15372/PMTF20150201}
\elib{https://elibrary.ru/item.asp?id=23592065 }
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2015
\vol 56
\issue 2
\pages 167--176
\crossref{https://doi.org/10.1134/S0021894415020017}
Linking options:
  • https://www.mathnet.ru/eng/pmtf959
  • https://www.mathnet.ru/eng/pmtf/v56/i2/p3
  • This publication is cited in the following 15 articles:
    1. Tobias Karl, Jan Zartmann, Simon Dalpke, Davide Gatti, Bettina Frohnapfel, Thomas Böhlke, “Influence of flow–fiber coupling during mold-filling on the stress field in short-fiber reinforced composites”, Comput Mech, 71:5 (2023), 991  crossref
    2. Evgeny I. Borzenko, Gennady R. Shrager, Smart Innovation, Systems and Technologies, 274, Advances in Theory and Practice of Computational Mechanics, 2022, 229  crossref
    3. E. I. Borzenko, O. A. D'yakova, G. R. Shrager, “Non-Isothermal Flow of a Non-Newtonian Fluid with the Free Surface in a Coaxial Channel”, Fluid Dyn, 57:6 (2022), 750  crossref
    4. Zhimin Cao, Wenjun Zong, Chunlei He, Jiaohu Huang, Wei Liu, Zhiyong Wei, “Transient temperature monitoring and safe cutting speed exploration in diamond turning of PBX surrogates”, Int J Adv Manuf Technol, 113:11-12 (2021), 3433  crossref
    5. E. I. Borzenko, G. R. Shrager, “The Structure of a Viscoplastic Fluid Flow during Filling of a Circular Pipe/Plane Channel”, J Appl Mech Tech Phy, 61:7 (2020), 1107  crossref
    6. E. I. Borzenko, G. R. Shrager, “Kinematics of Viscous Fluid Flow during the Filling of a Pipe with a Coaxial Central Body”, Fluid Dyn, 55:3 (2020), 338  crossref
    7. E.I. Borzenko, G.R. Shrager, “The structure of viscoplastic fluid flow during filling of a circular pipe / plane channel”, Comp. Contin. Mech., 12:2 (2019), 129  crossref
    8. Evgeny I. Borzenko, Oleg Yu Frolov, Gennady R. Shrager, “Kinematics of the fountain flow during pipe filling with a power‐law fluid”, AIChE Journal, 65:2 (2019), 850  crossref
    9. E.I. Borzenko, K.E. Ryltseva, G.R. Shrager, “Free-surface flow of a viscoplastic fluid during the filling of a planar channel”, Journal of Non-Newtonian Fluid Mechanics, 254 (2018), 12  crossref
    10. E. I. Borzenko, G. R. Shrager, “Structure of a Viscoplastic Flow During the Mold-Filling Process”, Theor Found Chem Eng, 52:4 (2018), 514  crossref
    11. E. I. Borzenko, I. A. Ryl'tsev, G. R. Shrager, “Kinematics of Bulkley–Herschel fluid flow with a free surface during the filling of a channel”, Fluid Dyn, 52:5 (2017), 646  crossref
    12. E Borzenko, I Ryltsev, O Frolov, G Shrager, “Nonisothermal filling of a planar channel with a power-law fluid”, J. Phys.: Conf. Ser., 899 (2017), 022001  crossref
    13. E Borzenko, K Ryltseva, O Frolov, G Shrager, “Mathematical simulation of nonisothermal filling of plane channel with non-Newtonian fluid”, J. Phys.: Conf. Ser., 754 (2016), 022002  crossref
    14. E. I. Borzenko, O. Yu. Frolov, G. R. Shrager, “Influence of the Viscous Dissipation of a Liquid Filling a Tube on the Deformation and Orientation of Liquid Elements”, J Eng Phys Thermophy, 89:4 (2016), 911  crossref
    15. E. I. Borzenko, G. R. Shrager, “Flow of a Non-Newtonian Liquid with a Free Surface”, J Eng Phys Thermophy, 89:4 (2016), 902  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025