Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1967, Volume 8, Issue 4, Pages 147–151 (Mi pmtf8429)  

This article is cited in 27 scientific papers (total in 27 papers)

Description of internal friction in the memory theory of elasticity using kernels with a weak singularity

S. I. Meshkov

Voronezh
Received: 03.01.1967
English version:
Journal of Applied Mechanics and Technical Physics, 1967, Volume 8, Issue 4, Pages 100–102
DOI: https://doi.org/10.1007/BF00913587
Document Type: Article
Language: Russian
Citation: S. I. Meshkov, “Description of internal friction in the memory theory of elasticity using kernels with a weak singularity”, Prikl. Mekh. Tekh. Fiz., 8:4 (1967), 147–151; J. Appl. Mech. Tech. Phys., 8:4 (1967), 100–102
Citation in format AMSBIB
\Bibitem{Mes67}
\by S.~I.~Meshkov
\paper Description of internal friction in the memory theory of elasticity using kernels with a weak singularity
\jour Prikl. Mekh. Tekh. Fiz.
\yr 1967
\vol 8
\issue 4
\pages 147--151
\mathnet{http://mi.mathnet.ru/pmtf8429}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 1967
\vol 8
\issue 4
\pages 100--102
\crossref{https://doi.org/10.1007/BF00913587}
Linking options:
  • https://www.mathnet.ru/eng/pmtf8429
  • https://www.mathnet.ru/eng/pmtf/v8/i4/p147
  • This publication is cited in the following 27 articles:
    1. Marina V. Shitikova, Konstantin A. Modestov, “Mathematical Modelling of Viscoelastic Media Without Bulk Relaxation via Fractional Calculus Approach”, Mathematics, 13:3 (2025), 350  crossref
    2. Ivan I. Popov, Marina V. Shitikova, Artem V. Levchenko, Alexey D. Zhukov, “Experimental identification of the fractional parameter of the fractional derivative standard linear solid model for fiber-reinforced rubber concrete”, Mechanics of Advanced Materials and Structures, 31:17 (2024), 4131  crossref
    3. Marina V Shitikova, “Impact response of a thin shallow doubly curved linear viscoelastic shell rectangular in plan”, Mathematics and Mechanics of Solids, 27:9 (2022), 1721  crossref
    4. M. V. Shitikova, “Fractional Operator Viscoelastic Models in Dynamic Problems of Mechanics of Solids: A Review”, Mech. Solids, 57:1 (2022), 1  crossref
    5. Marco Amabili, Prabakaran Balasubramanian, Giovanni Ferrari, “Nonlinear vibrations and damping of fractional viscoelastic rectangular plates”, Nonlinear Dyn, 103:4 (2021), 3581  crossref
    6. Peng Huang, Jixiong Zhang, Xingjie Yan, Anthony John Spencer Spearing, Meng Li, Shiwei Liu, “Deformation response of roof in solid backfilling coal mining based on viscoelastic properties of waste gangue”, International Journal of Mining Science and Technology, 31:2 (2021), 279  crossref
    7. Peng Huang, Jixiong Zhang, Ntigurirwa Jean Damascene, Chaowei Dong, Zhaojun Wang, “A fractional order viscoelastic-plastic creep model for coal sample considering initial damage accumulation”, Alexandria Engineering Journal, 60:4 (2021), 3921  crossref
    8. Yury A. Rossikhin, Marina V. Shitikova, Encyclopedia of Continuum Mechanics, 2020, 971  crossref
    9. Sergei Bosiakov, Encyclopedia of Continuum Mechanics, 2020, 946  crossref
    10. Jiangchuan Niu, Jian Hou, Yongjun Shen, Shaopu Yang, “Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid”, International Journal of Non-Linear Mechanics, 121 (2020), 103459  crossref
    11. Yuan Qin, Zhanlong Li, Dagang Sun, Yao Wang, Bao Sun, Jianmei Wang, “Response of fractional Maxwell viscoelastic oscillator subjected to impact load”, Journal of the Chinese Institute of Engineers, 43:8 (2020), 742  crossref
    12. A I Krusser, M V Shitikova, “Classification of viscoelastic models with integer and fractional order derivatives”, IOP Conf. Ser.: Mater. Sci. Eng., 747:1 (2020), 012007  crossref
    13. Yury A. Rossikhin†, Marina V. Shitikova, Encyclopedia of Continuum Mechanics, 2019, 1  crossref
    14. Sergei Bosiakov, Encyclopedia of Continuum Mechanics, 2019, 1  crossref
    15. Yu A Rossikhin, MV Shitikova, “Dynamic response of a viscoelastic plate impacted by an elastic rod”, Journal of Vibration and Control, 22:8 (2016), 2019  crossref
    16. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 17  crossref
    17. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 7  crossref
    18. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 55  crossref
    19. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 165  crossref
    20. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:61
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025