Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 4, Pages 211–223
DOI: https://doi.org/10.15372/PMTF20160420
(Mi pmtf828)
 

This article is cited in 13 scientific papers (total in 13 papers)

Calculation of the effective stiffness of corrugated plates by solving the problem on the plate cross-section

A. G. Kolpakova, S. I. Rakinb

a Siberian State University of Telecommunications and Informatics, Novosibirsk, 630108, Russia
b Siberian State University of Communications, Novosibirsk, 630049, Russia
Abstract: It is shown that for corrugated, in particular multilayer, plates, the tree-dimensional cell-averaging problem can be reduced to the two-dimensional problem on the cross section of the plate periodicity cell. This significantly increases the accuracy of numerical calculation of the effective stiffness of corrugated plates. Numerical calculations of the stiffness of a plate with sinusoidal corrugation were performed, and the results were compared with available data.
Keywords: corrugated plates, effective stiffness, reducing the dimension of the problem.
Received: 20.03.2015
Revised: 16.06.2015
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 4, Pages 757–767
DOI: https://doi.org/10.1134/S0021894416040209
Bibliographic databases:
Document Type: Article
UDC: 539.3+519.63
Language: Russian
Citation: A. G. Kolpakov, S. I. Rakin, “Calculation of the effective stiffness of corrugated plates by solving the problem on the plate cross-section”, Prikl. Mekh. Tekh. Fiz., 57:4 (2016), 211–223; J. Appl. Mech. Tech. Phys., 57:4 (2016), 757–767
Citation in format AMSBIB
\Bibitem{KolRak16}
\by A.~G.~Kolpakov, S.~I.~Rakin
\paper Calculation of the effective stiffness of corrugated plates by solving the problem on the plate cross-section
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 4
\pages 211--223
\mathnet{http://mi.mathnet.ru/pmtf828}
\crossref{https://doi.org/10.15372/PMTF20160420}
\elib{https://elibrary.ru/item.asp?id=26493354}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 4
\pages 757--767
\crossref{https://doi.org/10.1134/S0021894416040209}
Linking options:
  • https://www.mathnet.ru/eng/pmtf828
  • https://www.mathnet.ru/eng/pmtf/v57/i4/p211
  • This publication is cited in the following 13 articles:
    1. I. V. Andrianov, A. A. Kolpakov, L. Faella, “Asymptotic Model of a Piezoelectric Composite Beam”, J Appl Mech Tech Phy, 2024  crossref
    2. I. V. Andrianov, A. G. Kolpakov, L. Faella, “Asimptoticheskaya model kompozitnoi pezoelektricheskoi balki”, Prikl. mekh. tekhn. fiz., 65:2 (2024), 188–197  mathnet  crossref  elib
    3. Alexander G. Kolpakov, Sergei I. Rakin, Advanced Structured Materials, 198, Advances in Linear and Nonlinear Continuum and Structural Mechanics, 2023, 259  crossref
    4. Nazim Khan, Pritam Chakraborty, “Direct-Homogenization-Based Plate Models of Integrated Thermal Protection System for Reusable Launch Vehicles”, AIAA Journal, 61:12 (2023), 5242  crossref
    5. I. V. Andrianov, J. Awrejcewicz, A. A. Diskovsky, “Optimal design of the vascular stent ring in order to maximise radial stiffness”, Arch Appl Mech, 92:3 (2022), 667  crossref
    6. Nazim Khan, Pritam Chakraborty, “Thermomechanical Homogenization of Corrugated Core Sandwich Structures of Reusable Launch Vehicles”, AIAA Journal, 59:10 (2021), 4228  crossref
    7. Igor I. Andrianov, Igor V. Andrianov, Alexander A. Diskovsky, Eduard V. Ryzhkov, “Buckling of Corrugated Ring under Uniform External Pressure”, Symmetry, 12:8 (2020), 1250  crossref
    8. A.A. Kolpakov, A.G. Kolpakov, “On the effective stiffnesses of corrugated plates of various geometries”, International Journal of Engineering Science, 154 (2020), 103327  crossref
    9. I. I. Andrianov, J. Awrejcewicz, A.A. Diskovsky, “The Optimal Design of a Functionally Graded Corrugated Cylindrical Shell under Axisymmetric Loading”, International Journal of Nonlinear Sciences and Numerical Simulation, 20:3-4 (2019), 387  crossref
    10. P. Iwicki, K. Rejowski, J. Tejchman, “Determination of buckling strength of silos composed of corrugated walls and thin-walled columns using simplified wall segment models”, Thin-Walled Structures, 135 (2019), 414  crossref
    11. Alexey Beskopylny, Elena Kadomtseva, Grigory Strelnikov, Yaroslav Shabanov, “Influence of Boundary Conditions on the Stress-Strain State of a Corrugated Sheet Under Its Weight”, IOP Conf. Ser.: Mater. Sci. Eng., 661:1 (2019), 012029  crossref
    12. Igor I. Andrianov, Jan Awrejcewicz, Alexander A. Diskovsky, “Optimal design of a functionally graded corrugated cylindrical shell subjected to axisymmetric loading”, Arch Appl Mech, 88:6 (2018), 1027  crossref
    13. I. V. Andrianov, V. I. Olevskyi, Yu. B. Olevska, AIP Conference Proceedings, 2025, 2018, 070001  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025