Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 5, Pages 45–52
DOI: https://doi.org/10.15372/PMTF20160506
(Mi pmtf790)
 

This article is cited in 10 scientific papers (total in 10 papers)

Version of the linear elasticity theory with a structural parameter

A. F. Revuzhenko

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
Abstract: It is shown that, in the planar case, the system of constitutive equations of the linear elasticity theory should contain five independent equations. n the classical theory, only three equations are formulated, while the other two are contained in implicit form in the postulate of diffeomorphism, which the assumption of smoothness of the displacement field. A closed elasticity model is constructed without the assumption of diffeomorphism, and it contains a structural parameter having a dimension of length. It is shown that, in a static version, macrodeformations depend on stresses and the second derivatives of stresses by the coordinates, while there is dispersion of longitudinal and transverse waves in the dynamics.
Keywords: elasticity theory, texture, smoothness of the displacement field, dispersion.
Received: 06.09.2016
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 5, Pages 801–807
DOI: https://doi.org/10.1134/S0021894416050060
Bibliographic databases:
Document Type: Article
UDC: 539.371
Language: Russian
Citation: A. F. Revuzhenko, “Version of the linear elasticity theory with a structural parameter”, Prikl. Mekh. Tekh. Fiz., 57:5 (2016), 45–52; J. Appl. Mech. Tech. Phys., 57:5 (2016), 801–807
Citation in format AMSBIB
\Bibitem{Rev16}
\by A.~F.~Revuzhenko
\paper Version of the linear elasticity theory with a structural parameter
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 5
\pages 45--52
\mathnet{http://mi.mathnet.ru/pmtf790}
\crossref{https://doi.org/10.15372/PMTF20160506}
\elib{https://elibrary.ru/item.asp?id=27178519}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 5
\pages 801--807
\crossref{https://doi.org/10.1134/S0021894416050060}
Linking options:
  • https://www.mathnet.ru/eng/pmtf790
  • https://www.mathnet.ru/eng/pmtf/v57/i5/p45
  • This publication is cited in the following 10 articles:
    1. S. V. Lavrikov, “Development of Mathematical Modeling Methods and Solution of Present-Day Problems in Geomechanics at the Institute of Mining SB RAS”, J Min Sci, 60:4 (2024), 533  crossref
    2. A. F. Revuzhenko, “Three-Dimensional Model of a Structured Linearly Elastic Body”, Phys Mesomech, 25:1 (2022), 33  crossref
    3. S. V. Suknev, “APPLICATION OF THE FINITE FRACTURE MECHANICS APPROACH TO ASSESS THE FAILURE OF A QUASI-BRITTLE MATERIAL WITH A CIRCULAR HOLE”, Mech. Solids, 56:3 (2021), 301  crossref
    4. VI Altukhov, SV Lavrikov, AF Revuzhenko, “Stress concentration analysis in rock pillars in the framework of non-local elastic model with structural parameter”, IOP Conf. Ser.: Earth Environ. Sci., 773:1 (2021), 012007  crossref
    5. A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rocks with Internal Self-Balancing Stresses. Continuum Approximation”, J Min Sci, 56:2 (2020), 159  crossref
    6. S. V. Suknev, “Brittle and Quasi-Brittle Fracture of Geomaterials with Circular Hole in Nonuniform Compression”, J Min Sci, 56:2 (2020), 174  crossref
    7. SV Lavrikov, OA Mikenina, AF Revuzhenko, “Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel”, IOP Conf. Ser.: Earth Environ. Sci., 134 (2018), 012037  crossref
    8. S. V. Lavrikov, A. F. Revuzhenko, AIP Conference Proceedings, 2051, 2018, 020167  crossref
    9. A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rock with Internal Self-Balancing Stresses”, J Min Sci, 54:3 (2018), 368  crossref
    10. S. V. Lavrikov, A. F. Revuzhenko, AIP Conference Proceedings, 1893, 2017, 030122  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025