Abstract:
It is shown that, in the planar case, the system of constitutive equations of the linear elasticity theory should contain five independent equations. n the classical theory, only three equations are formulated, while the other two are contained in implicit form in the postulate of diffeomorphism, which the assumption of smoothness of the displacement field. A closed elasticity model is constructed without the assumption of diffeomorphism, and it contains a structural parameter having a dimension of length. It is shown that, in a static version, macrodeformations depend on stresses and the second derivatives of stresses by the coordinates, while there is dispersion of longitudinal and transverse waves in the dynamics.
Keywords:
elasticity theory, texture, smoothness of the displacement field, dispersion.
Citation:
A. F. Revuzhenko, “Version of the linear elasticity theory with a structural parameter”, Prikl. Mekh. Tekh. Fiz., 57:5 (2016), 45–52; J. Appl. Mech. Tech. Phys., 57:5 (2016), 801–807
\Bibitem{Rev16}
\by A.~F.~Revuzhenko
\paper Version of the linear elasticity theory with a structural parameter
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 5
\pages 45--52
\mathnet{http://mi.mathnet.ru/pmtf790}
\crossref{https://doi.org/10.15372/PMTF20160506}
\elib{https://elibrary.ru/item.asp?id=27178519}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 5
\pages 801--807
\crossref{https://doi.org/10.1134/S0021894416050060}
Linking options:
https://www.mathnet.ru/eng/pmtf790
https://www.mathnet.ru/eng/pmtf/v57/i5/p45
This publication is cited in the following 10 articles:
S. V. Lavrikov, “Development of Mathematical Modeling Methods and Solution of Present-Day Problems in Geomechanics at the Institute of Mining SB RAS”, J Min Sci, 60:4 (2024), 533
A. F. Revuzhenko, “Three-Dimensional Model of a Structured Linearly Elastic Body”, Phys Mesomech, 25:1 (2022), 33
S. V. Suknev, “APPLICATION OF THE FINITE FRACTURE MECHANICS APPROACH TO ASSESS THE FAILURE OF A QUASI-BRITTLE MATERIAL WITH A CIRCULAR HOLE”, Mech. Solids, 56:3 (2021), 301
VI Altukhov, SV Lavrikov, AF Revuzhenko, “Stress concentration analysis in rock pillars in the framework of non-local elastic model with structural parameter”, IOP Conf. Ser.: Earth Environ. Sci., 773:1 (2021), 012007
A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rocks with Internal Self-Balancing Stresses. Continuum Approximation”, J Min Sci, 56:2 (2020), 159
S. V. Suknev, “Brittle and Quasi-Brittle Fracture of Geomaterials with Circular Hole in Nonuniform Compression”, J Min Sci, 56:2 (2020), 174
SV Lavrikov, OA Mikenina, AF Revuzhenko, “Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel”, IOP Conf. Ser.: Earth Environ. Sci., 134 (2018), 012037
S. V. Lavrikov, A. F. Revuzhenko, AIP Conference Proceedings, 2051, 2018, 020167
A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rock with Internal Self-Balancing Stresses”, J Min Sci, 54:3 (2018), 368
S. V. Lavrikov, A. F. Revuzhenko, AIP Conference Proceedings, 1893, 2017, 030122