Abstract:
Different approaches to the determination of the carrying capacity of bars and shells under elastoplastic deformation and creep deformation conditions.
\Bibitem{Van16}
\by V.~I.~Vanko
\paper On the carrying capacity of structural elements
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 5
\pages 24--29
\mathnet{http://mi.mathnet.ru/pmtf787}
\crossref{https://doi.org/10.15372/PMTF20160503}
\elib{https://elibrary.ru/item.asp?id=27178516}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 5
\pages 784--788
\crossref{https://doi.org/10.1134/S0021894416050035}
Linking options:
https://www.mathnet.ru/eng/pmtf787
https://www.mathnet.ru/eng/pmtf/v57/i5/p24
This publication is cited in the following 5 articles:
A. S. Pugachuk, O. A. Vorozheeva, A. V. Chernyshev, OIL AND GAS ENGINEERING (OGE-2021), 2412, OIL AND GAS ENGINEERING (OGE-2021), 2021, 030035
Yu I Dimitrienko, E A Gubareva, A E Pichugina, “Asymptotic stress analysis of multilayer composite thin cylindrical shells”, IOP Conf. Ser.: Mater. Sci. Eng., 934 (2020), 012017
V. S. Okunev, SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019, 2201, SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019, 2019, 020012
Yu I Dimitrienko, E A Gubareva, A E Pichugina, “Theory of composite cylindrical shells under quasistatic vibrations, based on an asymptotic analysis of the general viscoelasticity theory equations”, IOP Conf. Ser.: Mater. Sci. Eng., 683:1 (2019), 012013
Yu I Dimitrienko, E A Gubareva, A E Pichugina, “Theory of the multilayer thin anisotropic shells, based on the asymptotic analysis of the general equations for the elasticity theory”, J. Phys.: Conf. Ser., 1141 (2018), 012097