Abstract:
This paper describes a problem of unsteady flow of an aqueous polymer solution in a strip with a free boundary, the condition on which includes the time derivative of the desired function. A solution to this problem is constructed for a layered flow in a strip of constant width. The dependence of variation of the strip width with time on a parameter proportional to relaxation viscosity is studied.
Keywords:
aqueous solutions of polymers, layered flows, flows with free boundaries.
\Bibitem{Fro22}
\by O.~A.~Frolovskaya
\paper Motion of an aqueous polymer solution with a free boundary
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2022
\vol 63
\issue 1
\pages 42--49
\mathnet{http://mi.mathnet.ru/pmtf7}
\crossref{https://doi.org/010.15372/PMTF20220106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409475}
\elib{https://elibrary.ru/item.asp?id=48064235}
Linking options:
https://www.mathnet.ru/eng/pmtf7
https://www.mathnet.ru/eng/pmtf/v63/i1/p42
This publication is cited in the following 3 articles:
A. G. Petrova, “Asimptoticheskii analiz modelei vyazkouprugikh zhidkostei s dvumya malymi parametrami relaksatsii”, Prikl. mekh. tekhn. fiz., 65:5 (2024), 157–168
V. V. Pukhnachov, “Strip deformation problem in three models of hydrodynamics”, Theoret. and Math. Phys., 211:2 (2022), 701–711
Evgenii S. Baranovskii, Mikhail A. Artemov, “Model for Aqueous Polymer Solutions with Damping Term: Solvability and Vanishing Relaxation Limit”, Polymers, 14:18 (2022), 3789