Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2017, Volume 58, Issue 4, Pages 46–55
DOI: https://doi.org/10.15372/PMTF20170404
(Mi pmtf679)
 

Estimates of the evolucion of small perturbations by radial spreading (drain) of a viscous ring

D. V. Georgievskii, G. S. Tlyustangelov

Lomonosov Moscow State University, Moscow, 119991, Russia
Abstract: The evolution of small perturbations of the kinematic and dynamic characteristics of the radial flow of a flat ring filled with a homogeneous Newtonian fluid or an ideal incompressible fluid is studied. When the flow rate is specified as a function of time, the basic motion is completely defined by the incompressibility condition regardless of the properties of the medium. For the streamfunction, we obtained a biparabolic equation with four homogeneous boundary conditions, which simulate adherence to the expanding (narrowing) walls of the ring. Upper-bound estimates of the perturbation are obtained using the method of integral relations for quadratic functionals. The case of exponential decay of initial perturbations is considered on a finite or infinite time interval. Justified The admissibility of the inviscid limit in the given problem is substantiated, and and both upper- and lower-bound estimates for this limit are obtained.
Keywords: spreading, drain, viscous fluid, perturbation, method of integral relations, Friedrichs inequalities, stability estimates, inviscid limit.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00848-а
Received: 23.06.2016
Revised: 01.09.2016
English version:
Journal of Applied Mechanics and Technical Physics, 2017, Volume 58, Issue 4, Pages 610–618
DOI: https://doi.org/10.1134/S0021894417040046
Bibliographic databases:
Document Type: Article
UDC: 532.517
Language: Russian
Citation: D. V. Georgievskii, G. S. Tlyustangelov, “Estimates of the evolucion of small perturbations by radial spreading (drain) of a viscous ring”, Prikl. Mekh. Tekh. Fiz., 58:4 (2017), 46–55; J. Appl. Mech. Tech. Phys., 58:4 (2017), 610–618
Citation in format AMSBIB
\Bibitem{GeoTly17}
\by D.~V.~Georgievskii, G.~S.~Tlyustangelov
\paper Estimates of the evolucion of small perturbations by radial spreading (drain) of a viscous ring
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2017
\vol 58
\issue 4
\pages 46--55
\mathnet{http://mi.mathnet.ru/pmtf679}
\crossref{https://doi.org/10.15372/PMTF20170404}
\elib{https://elibrary.ru/item.asp?id=29823150}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2017
\vol 58
\issue 4
\pages 610--618
\crossref{https://doi.org/10.1134/S0021894417040046}
Linking options:
  • https://www.mathnet.ru/eng/pmtf679
  • https://www.mathnet.ru/eng/pmtf/v58/i4/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024