Abstract:
The constitutive equations of motion of an elastic medium with given initial stresses are formulated in the form of a hyperbolic system of differential equations of the first order. Equations describing the propagation of small perturbations in a prestressed isotropic medium with an arbitrary energy dependence of the elastic deformation in the strain tensor are derived, and equations for the quadratic dependence of elastic strain energy on the strain tensor are given.
Keywords:
motion of an elastic medium, initial stresses, elastic waves.
Citation:
E. I. Romenskii, E. V. Lys, V. A. Tcheverda, M. I. Èpov, “Dynamics of deformation of an elastic medium with initial stresses”, Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 178–189; J. Appl. Mech. Tech. Phys., 58:5 (2017), 914–923
\Bibitem{RomLysTch17}
\by E.~I.~Romenskii, E.~V.~Lys, V.~A.~Tcheverda, M.~I.~\`Epov
\paper Dynamics of deformation of an elastic medium with initial stresses
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2017
\vol 58
\issue 5
\pages 178--189
\mathnet{http://mi.mathnet.ru/pmtf671}
\crossref{https://doi.org/10.15372/PMTF20170518}
\elib{https://elibrary.ru/item.asp?id=30295645}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2017
\vol 58
\issue 5
\pages 914--923
\crossref{https://doi.org/10.1134/S0021894417050182}
Linking options:
https://www.mathnet.ru/eng/pmtf671
https://www.mathnet.ru/eng/pmtf/v58/i5/p178
This publication is cited in the following 9 articles:
A. A. Markin, M. Yu. Sokolova, “Dynamic Equations for the Propagation of Acoustic Waves in Pre-Deformed Materials”, Mech. Solids, 59:2 (2024), 679
A. A. Markin, M. Yu. Sokolova, “Dynamic equations of acoustic wave propagation in pre-deformed materials”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 2, 166
Anastasiia Yu. Kutishcheva, Mikhail I. Epov, 2024 IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE), 2024, 980
Markus Hütter, Michal Pavelka, “Particle-based approach to the Eulerian distortion field and its dynamics”, Continuum Mech. Thermodyn., 35:5 (2023), 1943
Vladislav Balashov, Evgeny Savenkov, “A regularized phase field model for solid–fluid dynamics description”, Continuum Mech. Thermodyn., 35:2 (2023), 625
Remya Ampadi Ramachandran, Christine Lee, Lu Zhang, Supriya M. H, Divya Bijukumar, P. Srinivasa Pai, Kharma Foucher, Sheng-Wei Chi, Didem Ozevin, Mathew T. Mathew, “Total hip replacement monitoring: numerical models for the acoustic emission technique”, Med Biol Eng Comput, 60:5 (2022), 1497
V. A. Balashov, E. B. Savenkov, “A regularized phase field model for «solid–fluid» system accounting for chemical reactions”, Keldysh Institute preprints, 2021, 82–20
Vladislav Balashov, “A regularized isothermal phase-field model of two-phase solid–fluid mixture and its spatial dissipative discretization equations”, Russian Journal of Numerical Analysis and Mathematical Modelling, 36:4 (2021), 197
Maurizio Tavelli, Michael Dumbser, Dominic Etienne Charrier, Leonhard Rannabauer, Tobias Weinzierl, Michael Bader, “A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography”, Journal of Computational Physics, 386 (2019), 158