Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2018, Volume 59, Issue 2, Pages 167–176
DOI: https://doi.org/10.15372/PMTF20180117
(Mi pmtf606)
 

This article is cited in 14 scientific papers (total in 14 papers)

Elastoplastic model of rocks with a linear structural parameter

A. F. Revuzhenko, O. A. Mikenina

Mining Institute, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
Abstract: A closed mathematical model is formulated, which takes into account elastoplastic deformations and the medium capability of accumulating the energy of internal self-balanced stresses. Satisfaction of the diffeomorphism postulate (assumption of displacement field smoothness) is not required; as a result, the strains depend on the stresses and second derivatives of the stresses with respect to the coordinates. The model involves a linear structural parameter. Relations that take into account local bending of the elementary volumes of the medium are derived.
Keywords: rocks, elasticity, plasticity, self-balanced stresses, structural parameter.
Funding agency Grant number
Russian Science Foundation 16-17-10121
Received: 01.06.2017
English version:
Journal of Applied Mechanics and Technical Physics, 2018, Volume 59, Issue 2, Pages 332–340
DOI: https://doi.org/10.1134/S0021894418020177
Bibliographic databases:
Document Type: Article
UDC: 539.371
Language: Russian
Citation: A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic model of rocks with a linear structural parameter”, Prikl. Mekh. Tekh. Fiz., 59:2 (2018), 167–176; J. Appl. Mech. Tech. Phys., 59:2 (2018), 332–340
Citation in format AMSBIB
\Bibitem{RevMik18}
\by A.~F.~Revuzhenko, O.~A.~Mikenina
\paper Elastoplastic model of rocks with a linear structural parameter
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2018
\vol 59
\issue 2
\pages 167--176
\mathnet{http://mi.mathnet.ru/pmtf606}
\crossref{https://doi.org/10.15372/PMTF20180117}
\elib{https://elibrary.ru/item.asp?id=32773505}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2018
\vol 59
\issue 2
\pages 332--340
\crossref{https://doi.org/10.1134/S0021894418020177}
Linking options:
  • https://www.mathnet.ru/eng/pmtf606
  • https://www.mathnet.ru/eng/pmtf/v59/i2/p167
  • This publication is cited in the following 14 articles:
    1. D. S. Zhurkina, S. V. Lavrikov, “Calculation of Stress Concentration in Influence Zone of Mining Face within Gradient-Type Elastoplastic Modeling”, J Min Sci, 60:3 (2024), 375  crossref
    2. S. V. Lavrikov, “Development of Mathematical Modeling Methods and Solution of Present-Day Problems in Geomechanics at the Institute of Mining SB RAS”, J Min Sci, 60:4 (2024), 533  crossref
    3. A. F. Revuzhenko, “Two Concepts of Continuum Deformation Kinematics: Displacement Field of Points and Displacement Fields of Material Planes”, J Min Sci, 60:4 (2024), 567  crossref
    4. S. V. Lavrikov, O. A. Mikenina, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2899, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2023, 020088  crossref
    5. Tatyana A. Mladova, Lecture Notes in Networks and Systems, 200, Current Problems and Ways of Industry Development: Equipment and Technologies, 2021, 529  crossref
    6. Alexandr Revuzhenko, Sergey Lavrikov, L.D. Pavlova, V.I. Klishin, “Mathematical models of rock mass affected by high pressure gradients”, E3S Web Conf., 330 (2021), 01004  crossref
    7. VI Altukhov, SV Lavrikov, AF Revuzhenko, “Stress concentration analysis in rock pillars in the framework of non-local elastic model with structural parameter”, IOP Conf. Ser.: Earth Environ. Sci., 773:1 (2021), 012007  crossref
    8. A. F. Revuzhenko, S. V. Lavrikov, O. A. Mikenina, NUMERICAL METHODS FOR SOLVING PROBLEMS IN THE THEORY OF ELASTICITY AND PLASTICITY (EPPS 2021), 2448, NUMERICAL METHODS FOR SOLVING PROBLEMS IN THE THEORY OF ELASTICITY AND PLASTICITY (EPPS 2021), 2021, 020018  crossref
    9. Sergey Lavrikov, L.D. Pavlova, V.I. Klishin, “Mathematical model and numerical calculations of disastrous pressure phenomena in rock mass with weakening cavity”, E3S Web Conf., 330 (2021), 01005  crossref
    10. S. V. Klishin, “Discrete-Element Modeling of Strain Localization in Granular Medium at Passive Pressure Application to a Retaining Wall”, J Min Sci, 57:5 (2021), 740  crossref
    11. A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rocks with Internal Self-Balancing Stresses. Continuum Approximation”, J Min Sci, 56:2 (2020), 159  crossref
    12. S. V. Lavrikov, A. F. Revuzhenko, “MATHEMATICAL MODELING OF UNSTABLE DEFORMATION IN ROCK MASS WITH REGARD TO SELF-BALANCING STRESSES”, J Min Sci, 56:6 (2020), 887  crossref
    13. A. F. Revuzhenko, O. A. Mikenina, “Elastoplastic Model of Rock with Internal Self-Balancing Stresses”, J Min Sci, 54:3 (2018), 368  crossref
    14. S. V. Lavrikov, A. F. Revuzhenko, AIP Conference Proceedings, 2051, 2018, 020167  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025