Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2018, Volume 59, Issue 3, Pages 57–68
DOI: https://doi.org/10.15372/PMTF20180306
(Mi pmtf573)
 

This article is cited in 33 scientific papers (total in 33 papers)

Model for multiphase fluid flows with interphase interaction taken into account

V. A. Balashov, E. B. Savenkov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047, Russia
Abstract: A quasi-hydrodynamic system of equations describing flows of a heat-conducting viscous compressible multiphase multicomponent fluid is constructed taking into account surface effects. The system was obtained by generalizing the methods of obtaining a single-phase quasi-hydrodynamic system and a multicomponent flow model taking into account the surface effects based on the concept of microforces and microstresses. The equations are derived using the Coleman–Noll procedure. The results of the calculations show that the constructed model is applicable for modeling multiphase multicomponent flows with allowance for surface effects on the interfaces.
Keywords: quasi-hydrodynamic system of equations, multiphase hydrodynamics, diffuse boundary.
Received: 11.04.2017
Revised: 06.07.2017
English version:
Journal of Applied Mechanics and Technical Physics, 2018, Volume 59, Issue 3, Pages 434–444
DOI: https://doi.org/10.1134/S0021894418030069
Bibliographic databases:
Document Type: Article
UDC: 532.5
Language: Russian
Citation: V. A. Balashov, E. B. Savenkov, “Model for multiphase fluid flows with interphase interaction taken into account”, Prikl. Mekh. Tekh. Fiz., 59:3 (2018), 57–68; J. Appl. Mech. Tech. Phys., 59:3 (2018), 434–444
Citation in format AMSBIB
\Bibitem{BalSav18}
\by V.~A.~Balashov, E.~B.~Savenkov
\paper Model for multiphase fluid flows with interphase interaction taken into account
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2018
\vol 59
\issue 3
\pages 57--68
\mathnet{http://mi.mathnet.ru/pmtf573}
\crossref{https://doi.org/10.15372/PMTF20180306}
\elib{https://elibrary.ru/item.asp?id=35076571}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2018
\vol 59
\issue 3
\pages 434--444
\crossref{https://doi.org/10.1134/S0021894418030069}
Linking options:
  • https://www.mathnet.ru/eng/pmtf573
  • https://www.mathnet.ru/eng/pmtf/v59/i3/p57
  • This publication is cited in the following 33 articles:
    1. A. A. Zlotnik, T. A. Lomonosov, “Primenenie regulyarizovannykh uravnenii dinamiki geterogennykh binarnykh smesei dlya modelirovaniya fazovykh perekhodov voda-par”, Matem. modelirovanie, 37:1 (2025), 151–170  mathnet  crossref
    2. Vladislav Balashov, Evgeny Savenkov, Aleksey Khlyupin, Kirill M. Gerke, “Two-phase regularized phase-field density gradient Navier–Stokes based flow model: Tuning for microfluidic and digital core applications”, Journal of Computational Physics, 2024, 113554  crossref
    3. A. S. Fedchenko, “Properties of Regularized Equations for Barotropic Gas Mixtures”, J Math Sci, 270:6 (2023), 815  crossref
    4. A. Zlotnik, T. Lomonosov, “On a doubly reduced model for dynamics of heterogeneous mixtures of stiffened gases, its regularizations and their implementations”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:11 (2023)  crossref
    5. Chao Zhang, Lifeng Wang, “Thermorelaxing multicomponent flows investigated with a Baer-Nunziato-type model”, Phys. Rev. E, 108:4 (2023)  crossref
    6. Alexander Zlotnik, Timofey Lomonosov, “On Regularized Systems of Equations for Gas Mixture Dynamics with New Regularizing Velocities and Diffusion Fluxes”, Entropy, 25:1 (2023), 158  crossref
    7. V. A. Balashov, E. B. Savenkov, B. N. Chetverushkin, ““Digital Core” Technology and Supercomputer Computing”, Her. Russ. Acad. Sci., 93:1 (2023), 18  crossref
    8. A. A. Zlotnik, “On the construction of regularized equations of motion for a mixture of viscous incompressible fluids”, Dokl. Math., 106:2 (2022), 380–385  mathnet  crossref  crossref  mathscinet  elib
    9. Chao Zhang, Igor Menshov, Lifeng Wang, Zhijun Shen, “Diffuse interface relaxation model for two-phase compressible flows with diffusion processes”, Journal of Computational Physics, 466 (2022), 111356  crossref
    10. Alexander Zlotnik, Anna Fedchenko, Timofey Lomonosov, “Entropy Correct Spatial Discretizations for 1D Regularized Systems of Equations for Gas Mixture Dynamics”, Symmetry, 14:10 (2022), 2171  crossref
    11. Alexander Zlotnik, Anna Fedchenko, “On properties of aggregated regularized systems of equations for a homogeneous multicomponent gas mixture”, Math Methods in App Sciences, 45:15 (2022), 8906  crossref
    12. A. A. Zlotnik, A. S. Fedchenko, “On the Properties of a Quasihydrodynamic System of Equations for a Homogeneous Gas Mixture with a Common Regularizing Velocity”, Diff Equat, 58:3 (2022), 341  crossref
    13. Elizaveta Zipunova, Evgeny Savenkov, “Phase field model for electrically induced damage using microforce theory”, Mathematics and Mechanics of Solids, 27:6 (2022), 1111  crossref
    14. A. V. Ivanov, M. V. Kraposhin, T. G. Elizarova, “O novom metode regulyarizatsii uravnenii dvukhfaznoi neszhimaemoi sredy”, Preprinty IPM im. M. V. Keldysha, 2021, 061, 27 pp.  mathnet  crossref
    15. A. A. Zlotnik, A. S. Fedchenko, “Svoistva agregirovannoi kvazigidrodinamicheskoi sistemy uravnenii gomogennoi gazovoi smesi s obschei regulyarizuyuschei skorostyu”, Preprinty IPM im. M. V. Keldysha, 2021, 077, 26 pp.  mathnet  crossref
    16. V. A. Balashov, E. B. Savenkov, “Regulyarizovannaya model tipa fazovogo polya dlya opisaniya sistemy «zhidkost–tverdoe telo» s uchetom khimicheskikh reaktsii”, Preprinty IPM im. M. V. Keldysha, 2021, 082, 20 pp.  mathnet  crossref
    17. Vladislav Balashov, Alexander Zlotnik, “On a New Spatial Discretization for a Regularized 3D Compressible Isothermal Navier–Stokes–Cahn–Hilliard System of Equations with Boundary Conditions”, J Sci Comput, 86:3 (2021)  crossref
    18. T. G. Elizarova, E. V. Shilnikov, “Numerical simulation of gas mixtures based on the quasi-gasdynamic approach as applied to the interaction of a shock wave with a gas bubble”, Comput. Math. Math. Phys., 61:1 (2021), 118–128  mathnet  mathnet  crossref  crossref  isi  scopus
    19. Vladislav Balashov, “A regularized isothermal phase-field model of two-phase solid–fluid mixture and its spatial dissipative discretization equations”, Russian Journal of Numerical Analysis and Mathematical Modelling, 36:4 (2021), 197  crossref
    20. V.A. Balashov, “Dissipative spatial discretization of a phase field model of multiphase multicomponent isothermal fluid flow”, Computers & Mathematics with Applications, 90 (2021), 112  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025