Abstract:
A quasi-hydrodynamic system of equations describing flows of a heat-conducting viscous compressible multiphase multicomponent fluid is constructed taking into account surface effects. The system was obtained by generalizing the methods of obtaining a single-phase quasi-hydrodynamic system and a multicomponent flow model taking into account the surface effects based on the concept of microforces and microstresses. The equations are derived using the Coleman–Noll procedure. The results of the calculations show that the constructed model is applicable for modeling multiphase multicomponent flows with allowance for surface effects on the interfaces.
Keywords:
quasi-hydrodynamic system of equations, multiphase hydrodynamics, diffuse boundary.
Citation:
V. A. Balashov, E. B. Savenkov, “Model for multiphase fluid flows with interphase interaction taken into account”, Prikl. Mekh. Tekh. Fiz., 59:3 (2018), 57–68; J. Appl. Mech. Tech. Phys., 59:3 (2018), 434–444
\Bibitem{BalSav18}
\by V.~A.~Balashov, E.~B.~Savenkov
\paper Model for multiphase fluid flows with interphase interaction taken into account
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2018
\vol 59
\issue 3
\pages 57--68
\mathnet{http://mi.mathnet.ru/pmtf573}
\crossref{https://doi.org/10.15372/PMTF20180306}
\elib{https://elibrary.ru/item.asp?id=35076571}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2018
\vol 59
\issue 3
\pages 434--444
\crossref{https://doi.org/10.1134/S0021894418030069}
Linking options:
https://www.mathnet.ru/eng/pmtf573
https://www.mathnet.ru/eng/pmtf/v59/i3/p57
This publication is cited in the following 33 articles:
A. A. Zlotnik, T. A. Lomonosov, “Primenenie regulyarizovannykh uravnenii dinamiki geterogennykh binarnykh smesei dlya modelirovaniya fazovykh perekhodov voda-par”, Matem. modelirovanie, 37:1 (2025), 151–170
Vladislav Balashov, Evgeny Savenkov, Aleksey Khlyupin, Kirill M. Gerke, “Two-phase regularized phase-field density gradient Navier–Stokes based flow model: Tuning for microfluidic and digital core applications”, Journal of Computational Physics, 2024, 113554
A. S. Fedchenko, “Properties of Regularized Equations for Barotropic Gas Mixtures”, J Math Sci, 270:6 (2023), 815
A. Zlotnik, T. Lomonosov, “On a doubly reduced model for dynamics of heterogeneous mixtures of stiffened gases, its regularizations and their implementations”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:11 (2023)
Chao Zhang, Lifeng Wang, “Thermorelaxing multicomponent flows investigated with a Baer-Nunziato-type model”, Phys. Rev. E, 108:4 (2023)
Alexander Zlotnik, Timofey Lomonosov, “On Regularized Systems of Equations for Gas Mixture Dynamics with New Regularizing Velocities and Diffusion Fluxes”, Entropy, 25:1 (2023), 158
V. A. Balashov, E. B. Savenkov, B. N. Chetverushkin, ““Digital Core” Technology and Supercomputer Computing”, Her. Russ. Acad. Sci., 93:1 (2023), 18
A. A. Zlotnik, “On the construction of regularized equations of motion for a mixture of viscous incompressible fluids”, Dokl. Math., 106:2 (2022), 380–385
Chao Zhang, Igor Menshov, Lifeng Wang, Zhijun Shen, “Diffuse interface relaxation model for two-phase compressible flows with diffusion processes”, Journal of Computational Physics, 466 (2022), 111356
Alexander Zlotnik, Anna Fedchenko, Timofey Lomonosov, “Entropy Correct Spatial Discretizations for 1D Regularized Systems of Equations for Gas Mixture Dynamics”, Symmetry, 14:10 (2022), 2171
Alexander Zlotnik, Anna Fedchenko, “On properties of aggregated regularized systems of equations for a homogeneous multicomponent gas mixture”, Math Methods in App Sciences, 45:15 (2022), 8906
A. A. Zlotnik, A. S. Fedchenko, “On the Properties of a Quasihydrodynamic System of Equations for a Homogeneous Gas Mixture with a Common Regularizing Velocity”, Diff Equat, 58:3 (2022), 341
Elizaveta Zipunova, Evgeny Savenkov, “Phase field model for electrically induced damage using microforce theory”, Mathematics and Mechanics of Solids, 27:6 (2022), 1111
A. V. Ivanov, M. V. Kraposhin, T. G. Elizarova, “O novom metode regulyarizatsii uravnenii dvukhfaznoi neszhimaemoi sredy”, Preprinty IPM im. M. V. Keldysha, 2021, 061, 27 pp.
A. A. Zlotnik, A. S. Fedchenko, “Svoistva agregirovannoi kvazigidrodinamicheskoi sistemy uravnenii gomogennoi gazovoi smesi s obschei regulyarizuyuschei skorostyu”, Preprinty IPM im. M. V. Keldysha, 2021, 077, 26 pp.
V. A. Balashov, E. B. Savenkov, “Regulyarizovannaya model tipa fazovogo polya dlya opisaniya sistemy «zhidkost–tverdoe telo» s uchetom khimicheskikh reaktsii”, Preprinty IPM im. M. V. Keldysha, 2021, 082, 20 pp.
Vladislav Balashov, Alexander Zlotnik, “On a New Spatial Discretization for a Regularized 3D Compressible Isothermal Navier–Stokes–Cahn–Hilliard System of Equations with Boundary Conditions”, J Sci Comput, 86:3 (2021)
T. G. Elizarova, E. V. Shilnikov, “Numerical simulation of gas mixtures based on the quasi-gasdynamic approach as applied to the interaction of a shock wave with a gas bubble”, Comput. Math. Math. Phys., 61:1 (2021), 118–128
Vladislav Balashov, “A regularized isothermal phase-field model of two-phase solid–fluid mixture and its spatial dissipative discretization equations”, Russian Journal of Numerical Analysis and Mathematical Modelling, 36:4 (2021), 197
V.A. Balashov, “Dissipative spatial discretization of a phase field model of multiphase multicomponent isothermal fluid flow”, Computers & Mathematics with Applications, 90 (2021), 112