Abstract:
Using the variational principle in a geometrically nonlinear formulation The problem of parametric vibrations of a longitudinally stiffened orthotropic cylindrical shell in contact with an elastic medium and under internal pressure is solved in a geometrically nonlinear formulation using the variational principle. The influence of the external medium is taken into account using the Pasternak model. Amplitude-frequency dependences are constructed for parametric vibrations of a stiffened orthotropic cylindrical shell filled the medium.
Citation:
F. S. Latifov, M. A. Mekhtiev, “Nonlinear parametric vibrations of a longitudinally stiffened orthotropic cylindrical shell with filler”, Prikl. Mekh. Tekh. Fiz., 59:4 (2018), 195–203; J. Appl. Mech. Tech. Phys., 59:4 (2018), 747–754
This publication is cited in the following 2 articles:
I. T. Pirmamedov, F. S. Latifov, A. I. Khudieva, “Nonlinear parametric oscillations of a longitudinally reinforced orthotropic cylindrical shell filled with a viscous liquid”, J. Appl. Mech. Tech. Phys., 63:1 (2022), 161–171
M. A. Il'gamov, M. M. Shakiryanov, “Positions of elastic equilibrium of a pipeline with vibrating supports”, J. Appl. Mech. Tech. Phys., 63:3 (2022), 533–541