Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1986, Volume 27, Issue 3, Pages 70–78 (Mi pmtf5130)  

This article is cited in 3 scientific papers (total in 3 papers)

Conditions for nonlinear stability of flows of an ideal incompressible liquid

V. A. Vladimirov

Novosibirsk
Full-text PDF (996 kB) Citations (3)
Received: 07.05.1985
English version:
Journal of Applied Mechanics and Technical Physics, 1986, Volume 27, Issue 3, Pages 382–389
DOI: https://doi.org/10.1007/BF00910518
Document Type: Article
UDC: 532.51
Language: Russian
Citation: V. A. Vladimirov, “Conditions for nonlinear stability of flows of an ideal incompressible liquid”, Prikl. Mekh. Tekh. Fiz., 27:3 (1986), 70–78; J. Appl. Mech. Tech. Phys., 27:3 (1986), 382–389
Citation in format AMSBIB
\Bibitem{Vla86}
\by V.~A.~Vladimirov
\paper Conditions for nonlinear stability of flows of an ideal incompressible liquid
\jour Prikl. Mekh. Tekh. Fiz.
\yr 1986
\vol 27
\issue 3
\pages 70--78
\mathnet{http://mi.mathnet.ru/pmtf5130}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 1986
\vol 27
\issue 3
\pages 382--389
\crossref{https://doi.org/10.1007/BF00910518}
Linking options:
  • https://www.mathnet.ru/eng/pmtf5130
  • https://www.mathnet.ru/eng/pmtf/v27/i3/p70
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024