Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Volume 63, Issue 3, Pages 25–33
DOI: https://doi.org/10.15372/PMTF20220303
(Mi pmtf48)
 

Wentzel–Kramers–Brillouin solutions of the equation of internal gravitational waves in a stratified medium with slowly varying shear flows

V. V. Bulatov, Yu. V. Vladimirov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, 119526, Moscow, Russia
References:
Abstract: Model buoyancy frequency distribution and the Wentzel–Kramers–Brillouin method are used to obtain an asymptotic solution to a problem of constructing solutions that describe internal gravity waves in a stratified medium with a background shear flow slowly varying in depth. Dispersion relation asymptotics are expressed in terms of the Airy functions. Asymptotics for various model distributions of background shear flows are used to obtain analytical representations of dispersion relations and eigenfunctions. Exact and asymptotic results are compared for various distributions of background shear flows and generation regimes typical of a real ocean.
Keywords: stratified medium, internal gravity waves, buoyancy frequency, shear flows, Wentzel–Kramers–Brillouin method, Airy functions.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00111А
Received: 18.05.2021
Revised: 10.06.2021
Accepted: 28.06.2021
English version:
Journal of Applied Mechanics and Technical Physics, 2022, Volume 63, Issue 3, Pages 392–399
DOI: https://doi.org/10.1134/S0021894422030038
Bibliographic databases:
Document Type: Article
UDC: 532.59:534.1
Language: Russian
Citation: V. V. Bulatov, Yu. V. Vladimirov, “Wentzel–Kramers–Brillouin solutions of the equation of internal gravitational waves in a stratified medium with slowly varying shear flows”, Prikl. Mekh. Tekh. Fiz., 63:3 (2022), 25–33; J. Appl. Mech. Tech. Phys., 63:3 (2022), 392–399
Citation in format AMSBIB
\Bibitem{BulVla22}
\by V.~V.~Bulatov, Yu.~V.~Vladimirov
\paper Wentzel--Kramers--Brillouin solutions of the equation of internal gravitational waves in a stratified medium with slowly varying shear flows
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2022
\vol 63
\issue 3
\pages 25--33
\mathnet{http://mi.mathnet.ru/pmtf48}
\crossref{https://doi.org/10.15372/PMTF20220303}
\elib{https://elibrary.ru/item.asp?id=48659593}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2022
\vol 63
\issue 3
\pages 392--399
\crossref{https://doi.org/10.1134/S0021894422030038}
Linking options:
  • https://www.mathnet.ru/eng/pmtf48
  • https://www.mathnet.ru/eng/pmtf/v63/i3/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:41
    References:13
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024