Loading [MathJax]/jax/output/SVG/config.js
Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1989, Volume 30, Issue 2, Pages 26–33 (Mi pmtf4578)  

This article is cited in 13 scientific papers (total in 13 papers)

Stability of regular shock wave reflection

V. M. Teshukov

Novosibirsk
Received: 01.08.1988
English version:
Journal of Applied Mechanics and Technical Physics, 1989, Volume 30, Issue 2, Pages 189–196
DOI: https://doi.org/10.1007/BF00852163
Document Type: Article
UDC: 533.6.011
Language: Russian
Citation: V. M. Teshukov, “Stability of regular shock wave reflection”, Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 26–33; J. Appl. Mech. Tech. Phys., 30:2 (1989), 189–196
Citation in format AMSBIB
\Bibitem{Tes89}
\by V.~M.~Teshukov
\paper Stability of regular shock wave reflection
\jour Prikl. Mekh. Tekh. Fiz.
\yr 1989
\vol 30
\issue 2
\pages 26--33
\mathnet{http://mi.mathnet.ru/pmtf4578}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 1989
\vol 30
\issue 2
\pages 189--196
\crossref{https://doi.org/10.1007/BF00852163}
Linking options:
  • https://www.mathnet.ru/eng/pmtf4578
  • https://www.mathnet.ru/eng/pmtf/v30/i2/p26
  • This publication is cited in the following 13 articles:
    1. M.V. Chernyshov, K.E. Savelova, “EXTREME TRANSLATIONAL IMPACT OF TRIPLE-SHOCK CONFIGURATIONS OF BLAST WAVES IN A CONFINED VOLUME OF AN ORBITAL STATION”, Acta Astronautica, 2024  crossref
    2. Volker Elling, “Barotropic Euler shock polars”, Z. Angew. Math. Phys., 73:2 (2022)  crossref
    3. Volker W. Elling, “Shock polars for non-polytropic compressible potential flow”, CPAA, 21:5 (2022), 1581  crossref
    4. Yan-Chao Hu, Wen-Feng Zhou, Zhi-Gong Tang, Yan-Guang Yang, Zhao-Hu Qin, “Mechanism of hysteresis in shock wave reflection”, Phys. Rev. E, 103:2 (2021)  crossref
    5. Shuxing Chen, Series in Contemporary Mathematics, 4, Mathematical Analysis of Shock Wave Reflection, 2020, 165  crossref
    6. Volker Elling, “Triple points and sign of circulation”, Physics of Fluids, 31:12 (2019)  crossref
    7. Dening Li, Zheng Zhang, “Conical shock wave for non-isentropic compressible Euler system of equations”, J. Hyper. Differential Equations, 13:02 (2016), 215  crossref
    8. G. Ben-Dor, 29th International Symposium on Shock Waves 1, 2015, 3  crossref
    9. Dening Li, “Shock reflection and oblique shock waves”, Journal of Mathematical Physics, 48:12 (2007)  crossref
    10. Denis Serre, À ma Mère, Handbook of Mathematical Fluid Dynamics, 4, 2007, 39  crossref
    11. G. A. Tarnavskii, “Changes in the type of the shock-wave structure in high-velocity flows”, J. Appl. Mech. Tech. Phys., 46:2 (2005), 168–175  mathnet  mathnet  crossref
    12. G Ben-Dor, M Ivanov, E.I Vasilev, T Elperin, “Hysteresis processes in the regular reflection↔Mach reflection transition in steady flows”, Progress in Aerospace Sciences, 38:4-5 (2002), 347  crossref
    13. M. S. Ivanov, G. Ben-Dor, T. Elperin, A. N. Kudryavtsev, D. V. Khotyanovsky, “Flow-Mach-Number-Variation-Induced Hysteresis in Steady Shock Wave Reflections”, AIAA Journal, 39:5 (2001), 972  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025