Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2019, Volume 60, Issue 6, Pages 149–161
DOI: https://doi.org/10.15372/PMTF20190616
(Mi pmtf382)
 

This article is cited in 8 scientific papers (total in 8 papers)

Adiabatic heating of material in elastoplastic torsion with finite deformations

G. M. Sevastyanov, A. A. Burenin

Institute of Machinery and Metallurgy, Far East Branch, Russian Academy of Sciences, Komsomolsk-on-Amur, 681005, Russia
Full-text PDF (313 kB) Citations (8)
Abstract: In this paper, we study the torsion of an incompressible circular cylinder with fixed ends made of polymer material relative to the axis of symmetry taking into account adiabatic heating. The conservative deformation mechanism is determined by the elastic Mooney–Rivlin potential, and the dissipative deformation mechanism by the Tresca–Saint-Venant plastic potential. The problem is solved using multiplicative division of the total Almansi strain measure into elastic and plastic components. It is assumed that the local change in material temperature is due only to plastic dissipation. The thermal deformation of the material and hardening are neglected. The exact solution of the problem is obtained for an arbitrary dependence of the mechanical characteristics of the material on temperature. In particular, the axial force, the torque, and the temperature distribution in the sample as a function of increasing loading parameter are determined. The obtained solution is compared with the available experimental data.
Keywords: torsion of cylindrical rods, finite deformations, elastoplastic problem, related thermoplasticity, temperature softening, adiabatic conditions, Mooney-Rivlin incompressible material, Tresca condition, Poynting effect.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00507 А
Far Eastern Branch of the Russian Academy of Sciences 075-00414-19-00
Received: 13.12.2018
Revised: 21.05.2019
Accepted: 24.06.2019
English version:
Journal of Applied Mechanics and Technical Physics, 2019, Volume 60, Issue 6, Pages 1104–1114
DOI: https://doi.org/10.1134/S0021894419060166
Bibliographic databases:
Document Type: Article
UDC: 539.374
Language: Russian
Citation: G. M. Sevastyanov, A. A. Burenin, “Adiabatic heating of material in elastoplastic torsion with finite deformations”, Prikl. Mekh. Tekh. Fiz., 60:6 (2019), 149–161; J. Appl. Mech. Tech. Phys., 60:6 (2019), 1104–1114
Citation in format AMSBIB
\Bibitem{SevBur19}
\by G.~M.~Sevastyanov, A.~A.~Burenin
\paper Adiabatic heating of material in elastoplastic torsion with finite deformations
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2019
\vol 60
\issue 6
\pages 149--161
\mathnet{http://mi.mathnet.ru/pmtf382}
\crossref{https://doi.org/10.15372/PMTF20190616}
\elib{https://elibrary.ru/item.asp?id=41444473}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2019
\vol 60
\issue 6
\pages 1104--1114
\crossref{https://doi.org/10.1134/S0021894419060166}
Linking options:
  • https://www.mathnet.ru/eng/pmtf382
  • https://www.mathnet.ru/eng/pmtf/v60/i6/p149
  • This publication is cited in the following 8 articles:
    1. G. N. Kuvyrkin, D. R. Rakhimov, “Computational algorithm for analyzing the governing relations of the endochronic theory of thermoplasticity for isotropic materials”, J. Appl. Mech. Tech. Phys., 65:3 (2024), 496–501  mathnet  crossref  crossref  elib
    2. G. M. Sevastyanov, A. S. Begun, A. A. Burenin, “Finite-Strain Elastic-Plastic Circular Shear in Materials with Isotropic Hardening”, Prikladnaâ matematika i mehanika, 88:2 (2024), 313  crossref
    3. A. A. Burenin, A. V. Tkacheva, “Gadolin problem of assembling a prestressed two-layer pipe”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 929–942  mathnet  crossref  crossref  elib
    4. Gelacio Juárez-Luna, A. Gustavo Ayala, Ángel Uriel Martínez-Miranda, “Closed form solutions for the strain localization problem in a softening circular bar in pure torsion with the continuum damage and the embedded discontinuity models”, Mechanics of Materials, 169 (2022), 104303  crossref
    5. G. M. Sevast'yanov, “PLASTIC TORSION AT HIGH PRESSURE WITH NON-UNIFORM STRESS STATE”, Mech. Solids, 56:3 (2021), 368  crossref
    6. Georgiy M. Sevastyanov, “Adiabatic heating effect in elastic-plastic contraction / expansion of spherical cavity in isotropic incompressible material”, European Journal of Mechanics - A/Solids, 87 (2021), 104223  crossref
    7. Georgiy M. Sevastyanov, “Analytical solution for high-pressure torsion in the framework of geometrically nonlinear non-associative plasticity”, International Journal of Solids and Structures, 206 (2020), 383  crossref
    8. B. D. Annin, E. V. Karpov, A. Yu. Larichkin, “Influence of Anisotropy on the Deformation of a Polymer Composite with Shape Memory”, Mech. Solids, 55:6 (2020), 761  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :21
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025