Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2020, Volume 61, Issue 1, Pages 161–183
DOI: https://doi.org/10.15372/PMTF20200115
(Mi pmtf366)
 

Extension of the Günter derivatives to the Lipschitz domains and application to the boundary potentials of elastic waves

A. Bendaliab, S. Tordeuxc, Yu. M. Volchkovde

a Université Paul Sabatier, Toulouse, France
b Institut de Mathématiques de Toulouse, Toulouse, France
c Université de Pau et des Pays de l'Adour, Pau, France
d Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
e Novosibirsk State University, Novosibirsk, 630090, Russia
Abstract: Regularization techniques for the trace and the traction of elastic waves potentials previously built for domains of the class $\mathcal{C}^2$ are extended to the Lipschitz case. In particular, this yields an elementary way to establish the mapping properties of elastic wave potentials from those of the scalar Helmholtz equation without resorting to the more advanced theory for elliptic systems in the Lipschitz domains. Scalar Günter derivatives of a function defined on the boundary of a three-dimensional domain are expressed as components (or their opposites) of the tangential vector rotational $\nabla_{\delta\Omega}u\times\mathbf{n}$ of this function in the canonical orthonormal basis of the ambient space. This, in particular, implies that these derivatives define bounded operators from $H^s$ to $H^{s-1}$ ($0\le s\le1$) on the boundary of the Lipschitz domain and can easily be implemented in boundary element codes. Representations of the Günter operator and potentials of single and double layers of elastic waves in the two-dimensional case are provided.
Keywords: boundary integral operators, Günter derivatives, elastic waves, layer potentials, Lipschitz domains.
Received: 10.07.2019
Revised: 10.07.2019
Accepted: 29.07.2019
English version:
Journal of Applied Mechanics and Technical Physics, 2020, Volume 61, Issue 1, Pages 139–156
DOI: https://doi.org/10.1134/S0021894420010150
Bibliographic databases:
Document Type: Article
UDC: 519.3; 517.5
Language: Russian
Citation: A. Bendali, S. Tordeux, Yu. M. Volchkov, “Extension of the Günter derivatives to the Lipschitz domains and application to the boundary potentials of elastic waves”, Prikl. Mekh. Tekh. Fiz., 61:1 (2020), 161–183; J. Appl. Mech. Tech. Phys., 61:1 (2020), 139–156
Citation in format AMSBIB
\Bibitem{BenTorVol20}
\by A.~Bendali, S.~Tordeux, Yu.~M.~Volchkov
\paper Extension of the G\"unter derivatives to the Lipschitz domains and application to the boundary potentials of elastic waves
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2020
\vol 61
\issue 1
\pages 161--183
\mathnet{http://mi.mathnet.ru/pmtf366}
\crossref{https://doi.org/10.15372/PMTF20200115}
\elib{https://elibrary.ru/item.asp?id=42327595}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2020
\vol 61
\issue 1
\pages 139--156
\crossref{https://doi.org/10.1134/S0021894420010150}
Linking options:
  • https://www.mathnet.ru/eng/pmtf366
  • https://www.mathnet.ru/eng/pmtf/v61/i1/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:25
    Full-text PDF :13
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024