Abstract:
This study compares detailed mode maps during operation using air of two Rank pipes with round and square cross sections of the working channel in the case of identical guides at the inlet and identical outlets. The degree of air expansion and the fraction of flow rate through a cold outlet varies in ranges of 2–8 and 0.2–0.8, respectively. It is observed for both pipes that, as the degree of expansion increases, the dependences of the volumetric flow rate and the cooling coefficient on the fraction of cold flow rate become stable. It is revealed that the cooling coefficient in a round tube is 1.5–2.0 times greater than in a square channel, and the volumetric flow rate therein is approximately 10% lower.
Citation:
I. K. Kabardin, V. I. Polyakova, M. Kh. Pravdina, N. I. Yavorskii, M. R. Gordienko, “Analysis of modes in rank pipes with round and square cross sections of the working channel”, Prikl. Mekh. Tekh. Fiz., 61:1 (2020), 43–52; J. Appl. Mech. Tech. Phys., 61:1 (2020), 37–44
\Bibitem{KabPolPra20}
\by I.~K.~Kabardin, V.~I.~Polyakova, M.~Kh.~Pravdina, N.~I.~Yavorskii, M.~R.~Gordienko
\paper Analysis of modes in rank pipes with round and square cross sections of the working channel
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2020
\vol 61
\issue 1
\pages 43--52
\mathnet{http://mi.mathnet.ru/pmtf355}
\crossref{https://doi.org/10.15372/PMTF20200104}
\elib{https://elibrary.ru/item.asp?id=42327584}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2020
\vol 61
\issue 1
\pages 37--44
\crossref{https://doi.org/10.1134/S0021894420010046}
Linking options:
https://www.mathnet.ru/eng/pmtf355
https://www.mathnet.ru/eng/pmtf/v61/i1/p43
This publication is cited in the following 7 articles:
M. R. Gordienko, I. K. Kabardin, M. Kh. Pravdina, S. V. Kakaulin, V. I. Polyakova, V. G. Meledin, G. V. Bakakin, N. I. Yavorsky, “Comparison of air temperature at the level of the inner wall of vortex tubes with circular and square cross sections of the working channel”, Thermophys. Aeromech., 31:1 (2024), 29
I. K. Kabardin, “LDA-based experimental study of flow crisis in the Ranque—Hilsch vortex tube”, Thermophys. Aeromech., 29:5 (2023), 673
I. K. Kabardin, M. Kh. Pravdina, M. R. Gordienko, S. V. Kakaulin, S. V. Dvoinishnikov, V. G. Meledin, G. V. Bakakin, V. V. Rakhmanov, V. I. Polyakova, B. A. Sokolov, O. G. Derzho, “Development of Method of Low-Perturbation Multichannel Temperature Diagnostics in Vortex Tube”, J. Engin. Thermophys., 31:2 (2022), 309
M. R. Gordienko, N. I. Yavorsky, M. Kh. Pravdina, S. V. Kakaulin, I. K. Kabardin, “Visualization in a Ranque-Hilsch vortex tube using high-speed video recording”, Interexpo GEO-Siberia, 8:1 (2022), 138
M R Gordienko, N I Yavorsky, M Kh Pravdina, S V Kakaulin, I K Kabardin, “Visualization in the Ranque-Hilsch vortex tube using high-speed video recording”, J. Phys.: Conf. Ser., 2119:1 (2021), 012104
M. Kh. Pravdina, I. K. Kabardin, V. I. Polyakova, D. V. Kulikov, V. G. Meledin, V. A. Pavlov, M. R. Gordienko, N. I. Yavorskii, “Hydraulic flow instability in a Ranque tube”, J. Appl. Mech. Tech. Phys., 61:3 (2020), 384–390
M Kh Pravdina, I K Kabardin, V I Polyakova, M R Gordienko, N I Yavorsky, “The Flow Crisis and an Inner Source of Heating in the Vortex Tube”, J. Phys.: Conf. Ser., 1677:1 (2020), 012027