Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2020, Volume 61, Issue 2, Pages 60–70
DOI: https://doi.org/10.15372/PMTF20200206
(Mi pmtf339)
 

This article is cited in 6 scientific papers (total in 6 papers)

Optimization methodology of artificial neural network models for predicting molecular diffusion coefficients for polar and non-polar binary gases

N. Melzia, L. Khaouanea, S. Haninia, M. Laidia, Ya. Ammia, H. Zentoub

a University of Medea, Medea, Algeria
b Universiti Putra Malaysia, 43400, Serdang, Malaysia
Full-text PDF (330 kB) Citations (6)
Abstract: In this study, an artificial neural network (ANN) is used to develop predictive models for estimating molecular diffusion coefficients of various gases at multiple pressures over a large field of temperatures. Two feed-forward neural networks NN1 and NN2 are trained using six physicochemical properties: molecular weight, critical volume, critical temperature, dipole moment, temperature, and pressure for NN1 and molecular weight, critical pressure, critical temperature, dipole moment, temperature, and pressure for NN2. The diffusion coefficients are regarded as the output. A set of 1252 gases (941 non-polar and 311 polar gases) is used for training and testing the ANN performance, and good correlations are found ($R=0.986$ for NN1 and $R=0.988$ for NN2). The result of the sensitivity analysis shows the importance of the six input parameters selected for modeling the diffusion coefficient. Moreover, the present ANN model provides more accurate predictions than other models.
Keywords: artificial neural networks, modeling, molecular diffusion, prediction.
Received: 16.03.2018
Revised: 18.08.2019
Accepted: 30.09.2019
English version:
Journal of Applied Mechanics and Technical Physics, 2020, Volume 61, Issue 2, Pages 207–216
DOI: https://doi.org/10.1134/S0021894420020066
Bibliographic databases:
Document Type: Article
UDC: 004.89, 533.6
Language: Russian
Citation: N. Melzi, L. Khaouane, S. Hanini, M. Laidi, Ya. Ammi, H. Zentou, “Optimization methodology of artificial neural network models for predicting molecular diffusion coefficients for polar and non-polar binary gases”, Prikl. Mekh. Tekh. Fiz., 61:2 (2020), 60–70; J. Appl. Mech. Tech. Phys., 61:2 (2020), 207–216
Citation in format AMSBIB
\Bibitem{MelKhaHan20}
\by N.~Melzi, L.~Khaouane, S.~Hanini, M.~Laidi, Ya.~Ammi, H.~Zentou
\paper Optimization methodology of artificial neural network models for predicting molecular diffusion coefficients for polar and non-polar binary gases
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2020
\vol 61
\issue 2
\pages 60--70
\mathnet{http://mi.mathnet.ru/pmtf339}
\crossref{https://doi.org/10.15372/PMTF20200206}
\elib{https://elibrary.ru/item.asp?id=42694447}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2020
\vol 61
\issue 2
\pages 207--216
\crossref{https://doi.org/10.1134/S0021894420020066}
Linking options:
  • https://www.mathnet.ru/eng/pmtf339
  • https://www.mathnet.ru/eng/pmtf/v61/i2/p60
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :5
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024