Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1998, Volume 39, Issue 5, Pages 39–54 (Mi pmtf3313)  

This article is cited in 6 scientific papers (total in 6 papers)

Variational approach to constructing hyperbolic models of two-velocity media

S. L. Gavrilyukab, Yu. V. Perepechkoc

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk
b Aix-Marseille Université, 13397 Marseille
c Joint Institute of Geology, Geophysics, and Mineralogy, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk
Abstract: A generalized Hamilton variational principle of the mechanics of two-velocity media is proposed, and equations of motion for homogeneous and heterogeneous two-velocity continua are formulated. It is proved that the convexity of internal energy ensures the hyperbolicity of the one-dimensional equations of motion of such media linearized for the state of rest. In this case, the internal energy is a function of both the phase densities and the modulus of the difference in velocity between the phases. For heterogeneous media with incompressible components, it is shown that, in the case of low volumetric concentrations, the dependence of the internal energy on the modulus of relative velocity ensures the hyperbolicity of the equations of motion for any relative velocity of motion of the phases.
Received: 18.02.1997
English version:
Journal of Applied Mechanics and Technical Physics, 1998, Volume 39, Issue 5, Pages 684–698
DOI: https://doi.org/10.1007/BF02468039
Bibliographic databases:
Document Type: Article
UDC: 530.1, 531.31
Language: Russian
Citation: S. L. Gavrilyuk, Yu. V. Perepechko, “Variational approach to constructing hyperbolic models of two-velocity media”, Prikl. Mekh. Tekh. Fiz., 39:5 (1998), 39–54; J. Appl. Mech. Tech. Phys., 39:5 (1998), 684–698
Citation in format AMSBIB
\Bibitem{GavPer98}
\by S.~L.~Gavrilyuk, Yu.~V.~Perepechko
\paper Variational approach to constructing hyperbolic models of two-velocity media
\jour Prikl. Mekh. Tekh. Fiz.
\yr 1998
\vol 39
\issue 5
\pages 39--54
\mathnet{http://mi.mathnet.ru/pmtf3313}
\elib{https://elibrary.ru/item.asp?id=35307340}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 1998
\vol 39
\issue 5
\pages 684--698
\crossref{https://doi.org/10.1007/BF02468039}
Linking options:
  • https://www.mathnet.ru/eng/pmtf3313
  • https://www.mathnet.ru/eng/pmtf/v39/i5/p39
  • This publication is cited in the following 6 articles:
    1. A. E. Mamontov, D. A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, J. Appl. Industr. Math., 15:1 (2021), 50–61  mathnet  mathnet  crossref  crossref  scopus
    2. A E Mamontov, D A Prokudin, “Global unique solvability of the initial-boundary value problem for one-dimensional barotropic equations of viscous compressible bifluids”, J. Phys.: Conf. Ser., 1666:1 (2020), 012032  crossref
    3. G.L. Richard, M. Gisclon, C. Ruyer-Quil, J.P. Vila, “Optimization of consistent two-equation models for thin film flows”, European Journal of Mechanics - B/Fluids, 76 (2019), 7  crossref
    4. Francesco dell'Isola, Pierre Seppecher, Angela Madeo, CISM International Centre for Mechanical Sciences, 535, Variational Models and Methods in Solid and Fluid Mechanics, 2011, 315  crossref
    5. F. dell'Isola, A. Madeo, P. Seppecher, “Boundary conditions at fluid-permeable interfaces in porous media: A variational approach”, International Journal of Solids and Structures, 46:17 (2009), 3150  crossref
    6. S. Gavrilyuk, H. Gouin, “A new form of governing equations of fluids arising from Hamilton's principle”, International Journal of Engineering Science, 37:12 (1999), 1495  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025