Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1999, Volume 40, Issue 1, Pages 22–26 (Mi pmtf3025)  

This article is cited in 7 scientific papers (total in 7 papers)

Exact periodic and localized solutions of the equation ht=Δlnhht=Δlnh

S. N. Aristov

Institute of Mechanics of Continua, Ural Division, Russian Academy of Sciences, Perm' 614013
Full-text PDF (553 kB) Citations (7)
Abstract: New exact regular solutions of the nonlinear-diffusion equation are found. Various types of evolution of certain classes of localized initial perturbations are described. We show that, when a localized distribution in the form of a ring is specified, the instantaneous occurrence of the singularity in its center results from the diffusive spreading.
Received: 22.05.1997
English version:
Journal of Applied Mechanics and Technical Physics, 1999, Volume 40, Issue 1, Pages 16–19
DOI: https://doi.org/10.1007/BF02467967
Document Type: Article
UDC: 517.946
Language: Russian
Citation: S. N. Aristov, “Exact periodic and localized solutions of the equation ht=Δlnhht=Δlnh”, Prikl. Mekh. Tekh. Fiz., 40:1 (1999), 22–26; J. Appl. Mech. Tech. Phys., 40:1 (1999), 16–19
Citation in format AMSBIB
\Bibitem{Ari99}
\by S.~N.~Aristov
\paper Exact periodic and localized solutions of the equation $h_t=\Delta\ln h$
\jour Prikl. Mekh. Tekh. Fiz.
\yr 1999
\vol 40
\issue 1
\pages 22--26
\mathnet{http://mi.mathnet.ru/pmtf3025}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 1999
\vol 40
\issue 1
\pages 16--19
\crossref{https://doi.org/10.1007/BF02467967}
Linking options:
  • https://www.mathnet.ru/eng/pmtf3025
  • https://www.mathnet.ru/eng/pmtf/v40/i1/p22
  • This publication is cited in the following 7 articles:
    1. A. A. Kosov, È. I. Semenov, “New exact solutions of the diffusion equation with power nonlinearity”, Siberian Math. J., 63:6 (2022), 1102–1116  mathnet  crossref  crossref
    2. V. B. Bazarova, V. V. Pukhnachev, “Exact solutions of precursor film equation”, J. Math. Sci., 231:2 (2018), 124–142  mathnet  mathnet  crossref  crossref
    3. V. M. Zhuravlev, “Superposition principle and exact solutions of a nonlinear diffusion equation”, Theoret. and Math. Phys., 183:1 (2015), 478–490  mathnet  mathnet  crossref  crossref  isi  scopus
    4. Handbook of Nonlinear Partial Differential Equations, Second Edition, 2011, 1795  crossref
    5. Handbook of Nonlinear Partial Differential Equations, 2003  crossref
    6. Oleg V Kaptsov, Igor V Verevkin, “Differential constraints and exact solutions of nonlinear diffusion equations”, J. Phys. A: Math. Gen., 36:5 (2003), 1401  crossref
    7. V. M. Zhuravlev, “Exact solutions of the nonlinear diffusion equation $u_t=\Delta\log u+ \lambda u$ in a two-dimensional coordinate space”, Theoret. and Math. Phys., 124:2 (2000), 1082–1093  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025