|
Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2000, Volume 41, Issue 5, Pages 196–204
(Mi pmtf2994)
|
|
|
|
Determination of the ultimate states of elastoplastic bodies
B. D. Annin, V. V. Alekhin, S. N. Korobeinikov Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090
Abstract:
The equations of quasistatic deformation of elastoplastic bodies are considered in a geometrical linear formulation. After discretization of the equations with respect to spatial variables by the finite-element method, the problem of determining equilibrium onfigurations reduces to integration of a system of nonlinear ordinary differential equations. In the ultimate state of a body of an ideal elastoplastic material, the matrix of the system degenerates and the problem becomes singular. A regularization algorithm for determining solutions of the problems for the ultimate states of bodies is proposed. Numerical solutions of test problems of determining the ultimate loads and equilibrium configurations for ideal elastoplastic bodies confirm the reliability of the regularization algorithm proposed.
Received: 20.06.2000
Citation:
B. D. Annin, V. V. Alekhin, S. N. Korobeinikov, “Determination of the ultimate states of elastoplastic bodies”, Prikl. Mekh. Tekh. Fiz., 41:5 (2000), 196–204; J. Appl. Mech. Tech. Phys., 41:5 (2000), 937–944
Linking options:
https://www.mathnet.ru/eng/pmtf2994 https://www.mathnet.ru/eng/pmtf/v41/i5/p196
|
Statistics & downloads: |
Abstract page: | 35 | Full-text PDF : | 17 |
|