Abstract:
The effect of the molecular mass of a polymer sample on the dependence of the stationary viscosity on the velocity gradient upon simple shear and uniaxial tension is studied. The model of the dynamics of a suspension of noninteracting dumbbells in the anisotropic medium is used. The theoretical results show that the asymptotic behavior of the shear viscosity does not depend on the molecular mass and corresponds to experimental data.
Citation:
I. E. Golovicheva, S. A. Zinovich, G. V. Pyshnograi, “Effect of the molecular mass on the shear and longitudinal viscosity of linear polymers”, Prikl. Mekh. Tekh. Fiz., 41:2 (2000), 154–160; J. Appl. Mech. Tech. Phys., 41:2 (2000), 347–352
\Bibitem{GolZinPys00}
\by I.~E.~Golovicheva, S.~A.~Zinovich, G.~V.~Pyshnograi
\paper Effect of the molecular mass on the shear and longitudinal viscosity of linear polymers
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2000
\vol 41
\issue 2
\pages 154--160
\mathnet{http://mi.mathnet.ru/pmtf2913}
\elib{https://elibrary.ru/item.asp?id=17261885}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2000
\vol 41
\issue 2
\pages 347--352
\crossref{https://doi.org/10.1007/BF02465279}
Linking options:
https://www.mathnet.ru/eng/pmtf2913
https://www.mathnet.ru/eng/pmtf/v41/i2/p154
This publication is cited in the following 9 articles:
B. V. Semisalov, I. A. Bugoets, L. I. Kutkin, V. P. Shapeev, “Numerical Analysis of Stability Loss for Poiseuille-Type Polymer Fluid Flows under the Pulsed Effect of Pressure and Temperature”, Comput. Math. and Math. Phys., 65:2 (2025), 383
D. L. Tkachev, A. V. Yegitov, E. A. Biberdorf, “Linear instability of a resting state of the magnetohydrodynamic flows of polymeric fluid in a cylindrical channel (generalized Vinogradov–Pokrovski model)”, Physics of Fluids, 36:9 (2024)
B. V. Semisalov, “Exact Poiseuil-type solutions for flows of viscoelastic polymer fluid through a circular pipe”, J. Appl. Mech. Tech. Phys., 64:4 (2023), 675–685
D. L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov–Pokrovskii model”, Siberian Math. J., 64:2 (2023), 407–423
D.L. Tkachev, “Spectrum and linear Lyapunov instability of a resting state for flows of an incompressible polymeric fluid”, Journal of Mathematical Analysis and Applications, 522:1 (2023), 126914
A. M. Blokhin, B. V. Semisalov, “Finding steady Poiseuille-type flows for incompressible polymeric fluids by the relaxation method”, Comput. Math. Math. Phys., 62:2 (2022), 302–315
Boris Semisalov, Vasily Belyaev, Luka Bryndin, Arsenii Gorynin, Alexander Blokhin, Sergey Golushko, Vasily Shapeev, “Verified simulation of the stationary polymer fluid flows in the channel with elliptical cross-section”, Applied Mathematics and Computation, 430 (2022), 127294
A.A. Laas, M.A. Makarova, A.S. Malygina, G.O. Rudakov, G.V. Pyshnograi, “Refining rheological model for description of linear and nonlinear viscoelasticity of polymer systems”, Comp. Contin. Mech., 14:1 (2021), 12
A Blokhin, B Semisalov, “Numerical simulation of a stabilizing Poiseuille-type polymer fluid flow in the channel with elliptical cross-section”, J. Phys.: Conf. Ser., 2099:1 (2021), 012014