Abstract:
Stationary vibrations of a bimorph plate composed of two piezoelectric layers of equal thickness are studied. There is an infinitely thin cut electrode between the layers. A model of flexural vibrations of the bimorph that is based on the variational equation generalizing the Hamilton principle in electroelasticity is proposed. For the plane problem, a system of equations of motion is derived and the boundary conditions and the conjugate conditions at the interface of the regions of the cut electrode are formulated. For the TS–19 piezoceramics, resonance and antiresonance frequencies are calculated. The values obtained are compared with the calculation results obtained with the use of the Kirchhoff model and the finite–element method. It is shown that the use of a plate with a cut electrode allows one to increase the efficiency of vibration excitation compared to the case of a continuous internal electrode.
Citation:
A. O. Vatulyan, A. A. Rynkova, “Flexural vibrations of a piezoelectric bimorph with a cut internal electrode”, Prikl. Mekh. Tekh. Fiz., 42:1 (2001), 184–189; J. Appl. Mech. Tech. Phys., 42:1 (2001), 164–168
\Bibitem{VatRyn01}
\by A.~O.~Vatulyan, A.~A.~Rynkova
\paper Flexural vibrations of a piezoelectric bimorph with a cut internal electrode
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2001
\vol 42
\issue 1
\pages 184--189
\mathnet{http://mi.mathnet.ru/pmtf2730}
\elib{https://elibrary.ru/item.asp?id=17262012}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2001
\vol 42
\issue 1
\pages 164--168
\crossref{https://doi.org/10.1023/A:1018837401827}
Linking options:
https://www.mathnet.ru/eng/pmtf2730
https://www.mathnet.ru/eng/pmtf/v42/i1/p184
This publication is cited in the following 8 articles:
A. N. Soloviev, Thanh Binh Do, V. A. Chebanenko, O. N. Lesnyak, E. V. Kirillova, “Vibration analysis of a composite magnetoelectroelastic bimorph depending on the volume fractions of its components based on applied theory”, Vestnik Donskogo gosudarstvennogo tehničeskogo universiteta, 22:1 (2022), 4
A. N. Soloviev, B. T. Do, V. A. Chebanenko, I. A. Parinov, “Flexural Vibrations of a Composite Piezoactive Bimorph in an Alternating Magnetic Field: Applied Theory and Finite-Element Simulation”, Mech Compos Mater, 58:4 (2022), 471
A.N. Solovev, B.T. Do, V.A. Chebanenko, V.B. Vasilev, “ISSLEDOVANIE KOLEBANII BIMORFNOI PLASTINY IZ PEZOELEKTROMAGNITNOGO MATERIALA V PEREMENNOM MAGNITNOM POLE, “Nauka yuga Rossii””, Science in the South of Russia, 2021, no. 4, 3
Arkady N. Soloviev, Le Van Duong, P.A. Oganesyan, E.V. Kirillova, “Modeling Energy Harvesting Devices with Non-Uniformly Polarized Piezoceramic Materials”, AMM, 889 (2019), 322
A.N. Solovev, V.A. Chebanenko, I.A. Parinov, P.A. Oganesyan, “Issledovanie kolebanii bimorfnoi plastiny s uchetom nelineinosti elektricheskogo potentsiala, “Nauka Yuga Rossii””, Science in the South of Russia, 2019, no. 3, 3
Arkadiy Soloviev, Pavel Oganesyan, Pavel Romanenko, Le Van Duong, Olga Lesnjak, Springer Proceedings in Physics, 207, Advanced Materials, 2018, 353
Arkadiy N. Soloviev, Pavel A. Oganesyan, A. S. Skaliukh, Le V. Duong, Vijay Kumar Gupta, Ivan A. Panfilov, Springer Proceedings in Physics, 193, Advanced Materials, 2017, 473
SIDNEY B. LANG, “Guide to the Literature of Piezoelectricity and Pyroelectricity. 21”, Ferroelectrics, 300:1 (2004), 177